精英家教网 > 高中数学 > 题目详情
定义在R上的函数f(x)满足f(x)=f(x+2),当x∈[3,5]时,f(x)=2-|x-4|.下列不等关系:
<;②f(sin l)>f(cos l);
<;④f(cos 2)>f(sin 2).
其中正确的是________(填序号).
当x∈[-1,1]时,x+4∈[3,5],从而f(x)=f(x+4)=2-|x|,因为sin<cos,所以>
因为sin l>cos l,所以f(sin l)<f(cos l);因为<
所以>
因为|cos 2|<|sin 2|,
所以f(cos 2)>f(sin 2).
综上所述,正确的是④.
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

定义在R上的函数及二次函数满足:.
(1)求的解析式;
(2)对于,均有成立,求的取值范围;
(3)设,讨论方程的解的个数情况.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知周期函数f(x)的定义域为R,周期为2,且当-1<x≤1时,f(x)=1-x2.若直线y=-x+a与曲线y=f(x)恰有2个交点,则实数a的所有可能取值构成的集合为(  )
A.{a|a=2k+或2k+,k∈Z}
B.{a|a=2k-或2k+,k∈Z}
C.{a|a=2k+1或2k+,k∈Z}
D.{a|a=2k+1,k∈Z}

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

下列四个函数中,在(0,+∞)上为增函数的是(  )
A.f(x)=3-xB.f(x)=x2-3x
C.f(x)=-D.f(x)=-|x|

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

设函数f(x)=|x|x+bx+c,则下列命题中,真命题的序号有________.
(1)当b>0时,函数f(x)在R上是单调增函数;
(2)当b<0时,函数f(x)在R上有最小值;
(3)函数f(x)的图像关于点(0,c)对称;
(4)方程f(x)=0可能有三个实数根.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

若f(x)=-x2+2ax与g(x)=在区间[1,2]上都是减函数,则a的取值范围是________.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

[2014·沈阳模拟]已知函数f(x+1)是定义在R上的奇函数,若对于任意给定的不相等的实数x1、x2,不等式(x1-x2)·[f(x1)-f(x2)]<0恒成立,则不等式f(1-x)<0的解集为________.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知函数f(x)的定义域为[-1,5],部分对应值如下表:
x
-1
0
4
5
f(x)
1
2
2
1
 
f(x)的导函数y=f′(x)的图象如图所示.

下列关于函数f(x)的命题:
①函数y=f(x)是周期函数;
②函数f(x)在[0,2]上是减函数;
③如果当x∈[-1,t]时,f(x)的最大值是2,那么t的最大值为4;
④当1<a<2时,函数y=f(x)-a有4个零点.
其中真命题的个数是(  )
A.4         B.3        C.2       D.1

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

为实数,且满足:
,则          .

查看答案和解析>>

同步练习册答案