精英家教网 > 高中数学 > 题目详情
下列命题正确的有(  )个
(1)若a>b,则ac2>bc2
(2)若ac2>bc2,则a>b
(3)若a>b,c>d,则a-c>b-d
(4)若a<b<1,则
1-a
1-b
A.1B.2C.3D.4
(1)当c=0时,ac2=bc2,∴(1)不成立.
(2)由ac2>bc2,可知c≠0,∴a>b成立.
(3)若a=1,b=0,c=1,d=0,满足a>b,c>d,但则a-c>b-d不成立.
(4)若a<b<1,则-a>-b>-1,∴1-a>1-b>0,即
1-a
1-b
成立.
∴正确的是(2)(4).
故选:B.
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:填空题

如图,正方体ABCD-A1B1C1D1的棱长为1,P为BC的中点,Q为线段CC1上的动点,过点A,P,Q的平面截该正方体所得的截面记为S,则下列命题正确的是______(写出所有正确命题的编号).
①当0<CQ<
1
2
时,S为四边形
②当CQ=
1
2
时,S为等腰梯形
③当CQ=
3
4
时,S与C1D1的交点R满足C1R=
1
3

④当
3
4
<CQ<1时,S为六边形
⑤当CQ=1时,S的面积为
6
2

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

给出下列命题:
①若A,B是锐角△ABC的两内角,则有sinA>cosB;
②在同一坐标系中,函数y=sinx与y=lgx的交点个数为2个;
③如果
sinα-2cosα
3sinα+5cosα
=-5,那么tanα的值为-
23
16

④存在实数x,使得等式sinx+cosx=
3
2
成立;
⑤若0<x≤1,则
sin2x
x2
sinx
x

其中正确的命题为______(写出所有正确命题的序号).

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

如图,二次函数f(x)=ax2+bx+c(a≠0)的图象与x轴交于A、B两点,与y轴交于点C,点B坐标(-1,0),下面的四个结论:①OA=3;②a+b+c<0;③ac>0;④b2-4ac>0.其中正确的结论是(  )
A.①④B.①③C.②④D.①②

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

下列说法正确的是(  )
A.若命题p:“?x0∈R,x02+x0+1<0”,则¬p:“?x0∈R,x02+x0+1≥0”
B.命题“若m>0,则方程x2+x-m=0有实根”的逆否命题为“若方程x2+x-m=0无实根,则m<0”
C.已知f(x)是定义在R上的偶函数,且以4为周期,则“f(x)为[0,1]上的增函数”是“f(x)为[3,4]上的减函数”的充要条件
D.若p∧q为假命题,则p,q均为假命题

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

如图,PA⊥⊙O所在平面,AB是⊙O的直径,C是⊙O上一点,E、F分别是点A在PB、PC上的射影,给出下列结论:①AF⊥PB,②EF⊥PB,③AE⊥BC,④平面AEF⊥平面PBC,⑤△AFE是直角三角形,其中正确的命题的序号是______.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

以下命题正确的是______.
①把函数y=3sin(2x+
π
3
)
的图象向右平移
π
6
个单位,得到y=3sin2x的图象;
②一平面内两条直线的方程分别是f1(x,y)=0,f2(x,y)=0,它们的交点是P(x0,y0),则方程f1(x,y)+f2(x,y)=0表示的曲线经过点P;
③由“若ab=ac(a≠0,a,b,c,∈R),则b=c”.类比“若
a
b
=
a
c
(
a
0
a
b
c
为三个向量),则
b
=
c

④若等差数列{an}前n项和为sn,则三点(10,
s10
10
)
,(100,
s100
100
),(110,
s110
110
)共线.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

下列结论中,正确的是(  )
A.“?x∈Q,x2-5=0”的否定是假命题
B.“?x∈R,x2+1<1”的否定是“?x∈R,x2+1<1”
C.“2≤2”是真命题
D.“?x∈R,x2+1≠0”的否定是真命题

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

原命题 :“设”以及它的逆命题,否命题、逆否命题中,真命题共有( )个.
A.0  B.1   C.2 D.4

查看答案和解析>>

同步练习册答案