【题目】已知
.
(1)当
时,求
的单调区间;
(2)若函数
在
处取得极大值,求实数a的取值范围.
科目:高中数学 来源: 题型:
【题目】如图,在多面体
中,四边形
为矩形,
,
均为等边三角形,
,
.
![]()
(1)过
作截面与线段
交于点
,使得
平面
,试确定点
的位置,并予以证明;
(2)在(1)的条件下,求直线
与平面
所成角的正弦值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知动圆P与圆
:
内切,且与直线
相切,设动圆圆心
的轨迹为曲线
.
(1)求曲线
的方程;
(2)过曲线
上一点
(
)作两条直线
,
与曲线
分别交于不同的两点
,
,若直线
,
的斜率分别为
,
,且
.证明:直线
过定点.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知直线
过椭圆
的右焦点
,抛物线
的焦点为椭圆
的上顶点,且
交椭圆
于
两点,点
在直线
上的射影依次为
.
(1)求椭圆
的方程;
(2)若直线
交
轴于点
,且
,当
变化时,证明:
为定值;
(3)当
变化时,直线
与
是否相交于定点?若是,请求出定点的坐标,并给予证明;否则,说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】定义在
上的函数
同时满足以下条件:①
在
上为减函数,
上是增函数;②
是偶函数;③
在
处的切线与直线
垂直.
(1)求函数
的解析式;
(2)设
,若对![]()
,使
成立,求实数
的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆C的左、右焦点坐标分别是
,
,离心率是
,直线
与椭圆C交与不同的两点M,N,以线段MN为直径作圆P,圆心为P.
(Ⅰ)求椭圆C的方程;
(Ⅱ)若圆P与x轴相切,求圆心P的坐标;
(Ⅲ)设Q(x,y)是圆P上的动点,当t变化时,求y的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在四棱锥
中,底面
为正方形,
底面
,
,
为线段
的中点.
![]()
(1)若
为线段
上的动点,证明:平面
平面
;
(2)若
为线段
,
,
上的动点(不含
,
),
,三棱锥
的体积是否存在最大值?如果存在,求出最大值;如果不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】下列命题中正确的是( )
①已知随机变量
服从正态分布
,且
,则
;
②相关系数r用来衡量两个变量之间线性关系的强弱,
越大,相关性越弱;
③相关指数
用来刻画回归的效果,
越小,说明模型的拟合效果越好;
④在残差图中,残差点分布的带状区域越狭窄,其模型拟合的精度就越高.
A.①②B.①④C.②③D.③④
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com