精英家教网 > 高中数学 > 题目详情
3.如图是函数f(x)的图象,OC段是射线,而OBA是抛物线的一部分,试写出f(x)的函数表达式.

分析 对x的范围进行讨论,使用待定系数法求出f(x)的解析式.

解答 解:当x≤0时,f(x)为正比例函数,设f(x)=kx,
则f(-2)=-2,即-2k=-2,∴k=1.
当x>0时,f(x)为二次函数,设f(x)=ax2+bx+c,
则$\left\{\begin{array}{l}{f(0)=0}\\{f(1)=-1}\\{f(2)=0}\end{array}\right.$,即$\left\{\begin{array}{l}{c=0}\\{a+b+c=-1}\\{4a+2b+c=0}\end{array}\right.$,
解得a=1,b=-2,c=0.即f(x)=x2-2x.
∴f(x)=$\left\{\begin{array}{l}{x,x≤0}\\{{x}^{2}-2x,x>0}\end{array}\right.$.

点评 本题考查了函数解析式的解法,分段函数的图象,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

13.在数列{an}中,a1=a(a≠0,a≠1),数列{an}的前n项和Sn,且Sn=$\frac{a}{1-a}$(1-an),
(1)求证:{an}是等比数列;
(2)记bn=anlg|an|(n∈N*),当a=-$\frac{{\sqrt{7}}}{3}$时,是否存在正整数m,使得对于任意正整数n,都有bn≥bm?如果存在,求出m的值;如果不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.已知直线m,n不重合,平面α,β不重合,下列命题正确的是(  )
A.若m?β,n?β,m∥α,n∥α,则α∥βB.若m?α,m?β,α∥β,则m∥n
C.若α⊥β,m?α,n?β,则m⊥nD.若m⊥α,n?α,则m⊥n

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.lg$\frac{1}{4}$-lg25=(  )
A.-2B.0C.1D.2

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.以下命题(其中a,b表示直线,a表示平面):
①a∥b,b?α,则a∥α;②若a∥α,b?α,则a∥b;
③若a∥b,b∥α,则a∥α;其中正确命题的个数是(  )
A.0个B.1个C.2个D.3个

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.设集合M={x|x≤-1)},N={x|x>m},若M∩N=∅,则实数m的取值范围是(  )
A.m≥-1B.m>-1C.m≤-1D.m<-1

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.已知函数f(x)=kx3+3(k-1)x2-k2+1(k>0).
(1)若f(x)的单调递减区间是(0,4),实数k的值为$\frac{1}{3}$;
(2)若f(x)在(0,4)上为减函数,则实数k的取值范围是(-∞,$\frac{1}{3}$].

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.若函数f(x)的图象上存在不同的两点,使得此函数的图象在这两点处的切线相互垂直,则称函数f(x)具有T性质,下列函数中具有T性质的是(  )
A.f(x)=x3-x2+xB.f(x)=-2x+sinxC.f(x)=ex-e-xD.f(x)=1+xlnx

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.设f(x)=$\frac{1-{x}^{2}}{1+{x}^{2}}$.
(1)判断函数f(x)在[0,+∞)上的单调性,并按单调性定义证明.
(2)求f(x)的值域.

查看答案和解析>>

同步练习册答案