分析 对x的范围进行讨论,使用待定系数法求出f(x)的解析式.
解答 解:当x≤0时,f(x)为正比例函数,设f(x)=kx,
则f(-2)=-2,即-2k=-2,∴k=1.
当x>0时,f(x)为二次函数,设f(x)=ax2+bx+c,
则$\left\{\begin{array}{l}{f(0)=0}\\{f(1)=-1}\\{f(2)=0}\end{array}\right.$,即$\left\{\begin{array}{l}{c=0}\\{a+b+c=-1}\\{4a+2b+c=0}\end{array}\right.$,
解得a=1,b=-2,c=0.即f(x)=x2-2x.
∴f(x)=$\left\{\begin{array}{l}{x,x≤0}\\{{x}^{2}-2x,x>0}\end{array}\right.$.
点评 本题考查了函数解析式的解法,分段函数的图象,属于基础题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 若m?β,n?β,m∥α,n∥α,则α∥β | B. | 若m?α,m?β,α∥β,则m∥n | ||
| C. | 若α⊥β,m?α,n?β,则m⊥n | D. | 若m⊥α,n?α,则m⊥n |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 0个 | B. | 1个 | C. | 2个 | D. | 3个 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | m≥-1 | B. | m>-1 | C. | m≤-1 | D. | m<-1 |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | f(x)=x3-x2+x | B. | f(x)=-2x+sinx | C. | f(x)=ex-e-x | D. | f(x)=1+xlnx |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com