精英家教网 > 高中数学 > 题目详情
8.设集合A={(x1,x2,x3,x4)|xi∈{-1,0,1,2},i=1,2,3,4},那么集合A中满足条件“1≤|sin$\frac{{x}_{1}π}{2}$|+|sin$\frac{{x}_{2}π}{2}$|+|sin$\frac{{x}_{3}π}{2}$|+|sin$\frac{{x}_{4}π}{2}$|≤3”的元素个数为174.

分析 从条件“1≤|sin$\frac{{x}_{1}π}{2}$|+|sin$\frac{{x}_{2}π}{2}$|+|sin$\frac{{x}_{3}π}{2}$|+|sin$\frac{{x}_{4}π}{2}$|≤3”入手,由x得取值,绝对值只能是1或0,将x分为两组A={0},B={-1,1},分别讨论xi所有取值的可能性,分为4个数值中有1个是0,2个是0,3个是0这样的三种情况分别进行讨论

解答 解:由题目中“1≤|sin$\frac{{x}_{1}π}{2}$|+|sin$\frac{{x}_{2}π}{2}$|+|sin$\frac{{x}_{3}π}{2}$|+|sin$\frac{{x}_{4}π}{2}$|≤3”考虑x1,x2,x3,x4的可能取值,设A={0},B={-1,1,2}
分为①有1个取值为0,另外3个从B中取,共有方法数:${C}_{4}^{1}$•33=108;
②有2个取值为0,另外2个从B中取,共有方法数:${C}_{4}^{2}$•32=54;
③有3个取值为0,另外1个从B中取,共有方法数:${C}_{4}^{3}$•31=12
∴元素个数为108+54+12=174.
故答案为:174.

点评 本题看似集合题,其实考察的是用排列组合思想去解决问题.其中,分类讨论的方法是在概率统计中经常用到的方法,也是高考中一定会考查到的思想方法

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

18.如图,已知PE切圆O于点E,割线PBA交圆O于A,B两点,∠APE的平分线和AE,BE分别交于点C,D.
(1)求证:CE=DE;
(2)求证:$\frac{PE}{PA}=\frac{CE}{CA}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.证明:Sn,S2n-Sn,S3n-S2n,…成等差数列.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.求由抛物线y=x2-x,直线x=-1及x轴围成的图形面积.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.2lg10+(lg5+lg2)2=3.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知函数f(x)=x-$\frac{a}{x}$.g(x)=2ln(x+m),
(Ⅰ)当m=0时,存在x0∈[$\frac{1}{e}$,e](e为自然对数的底数),使x0f(x0)≥g(x0),求实数a的取值范围;
(Ⅱ)当a=m=1时,
(1)求最大正整数n,使得对任意n+1个实数xi(i=1,2…,n+1),当xi∈[e-1,2](e为自然对数的底数)时,都有$\sum_{i=1}^{n}$f(xi)<2015g(xn+1)成立;
(2)设H(x)=xf(x)+g(x),在H(x)的图象上是否存在不同的两点A(x1,y1),B(x2,y2)(x1>x2>-1),使得H(x1)-H(x2)=H′($\frac{{x}_{1}+{x}_{2}}{2}$)(x1-x2).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.若函数f(x)=ln(x+$\frac{a}{x}$-4)的值域为R,则实数a的取值范围是(-∞,4].

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知x>0,y>0,2x+y=2,求$\frac{4}{x}$+$\frac{1}{y}$的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.求(x+3)(x-1)7的二项求展开式中x5项系数.

查看答案和解析>>

同步练习册答案