精英家教网 > 高中数学 > 题目详情
18.如图,已知PE切圆O于点E,割线PBA交圆O于A,B两点,∠APE的平分线和AE,BE分别交于点C,D.
(1)求证:CE=DE;
(2)求证:$\frac{PE}{PA}=\frac{CE}{CA}$.

分析 (1)通过弦切角定理以及角的平分线,直接证明三角形是等腰三角形,即可证明CE=DE;
(2)利用角的平分线定理直接求证.

解答 证明:(1)∵PE切圆O于E,∴∠PEB=∠A,
又∵PC平分∠APE,∴∠CPE=∠CPA,
∴∠PEB+∠CPE=∠A+∠CPA,
∴∠CDE=∠DCE,即CE=DE.
(Ⅱ)∵PC平分∠APE,
∴$\frac{PE}{PA}=\frac{CE}{CA}$

点评 本题考查角的平分线定理,弦切角定理的应用,考查逻辑推理能力,比较基础.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

8.已知椭圆C的中心在原点,焦点在X轴上,离心率等于$\frac{1}{2}$,它的两个顶点恰好是双曲线$\frac{{y}^{2}}{9}$-$\frac{{x}^{2}}{3}$=1的焦点.
(1)求椭圆C的方程;
(2)点P(2,3),Q(2,-3),在椭圆上,A,B是椭圆上位于直线PQ两恻的动点,
①若直线AB的斜率为$\frac{1}{2}$,求四边形APBQ面积的最大值;
②当A,B运动时,满足于∠APQ=∠BPQ,试问直线AB的斜率是否为定值,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.设函数f(x)=aex+bx2(a>0,b∈R),且f′(lna)=2lna+a2b.
(Ⅰ)求实数b的值;
(Ⅱ)若直线y=x+1是函数y=f(x)图象的一条切线,求实数a的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知四棱锥P-ABCD的三视图如下,E是侧棱PC上的动点.

(Ⅰ)求四棱锥P-ABCD的体积;
(Ⅱ)不论点E在何位置,是否都有BD⊥AE?证明你的结论;
(Ⅲ)是否存在E点使得PA∥平面BDE?证明你的结论.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知函数f(x)=ax2+x+lnx(a∈R).
(Ⅰ)当a=1时,求函数f(x)的图象在点(1,f(1))处的切线方程;
(Ⅱ)设a=0,求证:当x>0时,f(x)≤2x-1;
(Ⅲ)若函数y=f(x)恰有两个零点x1,x2(x1<x2),求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.曲线y=ex+3在(0,4)处的切线方程为(  )
A.2x+y-4=0B.2x-y+4=0C.x-y+4=0D.x+y-4=0

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.如图,直二面角α-l-β中,AB?α,CD?β,AB⊥l,CD⊥l,垂足分别为B、C,且AB=BC=CD=1,则AD的长等于(  )
A.$\sqrt{2}$B.$\sqrt{3}$C.2D.$\sqrt{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.对于任意实数a,b,定义min{a,b}=$\left\{\begin{array}{l}{a,a≤b}\\{b,a>b}\end{array}\right.$,定义在R上的偶函数f(x)满足f(x-4)=f(x),且当0≤x≤2时,f(x)=min{2x-1,2-x},若方程f(x)-mx=0恰有4个零点,则m的取值范围是(  )
A.(-$\frac{1}{3}$,$\frac{1}{3}$)B.(-$\frac{1}{3}$,$\frac{1}{5}$)C.($\frac{1}{5}$,$\frac{1}{3}$)D.(-$\frac{1}{3}$.$\frac{1}{5}$)∪($\frac{1}{5}$,$\frac{1}{3}$)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.设集合A={(x1,x2,x3,x4)|xi∈{-1,0,1,2},i=1,2,3,4},那么集合A中满足条件“1≤|sin$\frac{{x}_{1}π}{2}$|+|sin$\frac{{x}_{2}π}{2}$|+|sin$\frac{{x}_{3}π}{2}$|+|sin$\frac{{x}_{4}π}{2}$|≤3”的元素个数为174.

查看答案和解析>>

同步练习册答案