精英家教网 > 高中数学 > 题目详情
如图,四棱锥P-ABCD的底面ABCD为菱形,PD⊥平面ABCD,PD=AD=2,∠BAD=60°,E、F分别为BC、PA的中点.
(I)求证:ED⊥平面PAD;
(Ⅱ)求三棱锥P-DEF的体积;
(Ⅲ)求平面PAD与平面PBC所成的锐二面角大小的余弦值.

【答案】分析:(I) 要证DE⊥平面PAD. 关键是证明DE⊥AD,PD⊥DE,利用条件线面垂直可证;
(Ⅱ)利用转化底面的方法可求三棱锥P-DEF的体积,即VP-DEF=VE-PDF
(Ⅲ) 建立空间直角坐标系,利用平面的法向量的夹角求平面PAD与平面PBC所成的锐二面角大小的余弦值.
解答:证明:(I)连接BD,由已知得BD=2,


在正三角形BCD中,BE=EC,∴DE⊥BC,又AD∥BC,∴DE⊥AD…(2分)
又PD⊥平面ABCD,∴PD⊥DE,…(3分)
AD∩PD=D,∴DE⊥平面PAD.  …(4分)
(Ⅱ)∵
,…(5分)
…(8分)
(Ⅲ):如图建立空间直角坐标系D-AEP,

则由(I)知平面PAD的一个法向量为,∴
设平面PBC的法向量为
,∴
取y=2得…(11分)∴…(13分)
∴平面PAD与平面PBC所成的锐二面角大小的余弦值为…(14分)
点评:本题的考点是用空间向量其余平面的夹角,主要考查线面垂直,考查面面角,关键是建立坐标系,求平面的法向量.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

如图,四棱锥P-ABCD中,PA⊥底面ABCD,AB⊥AD,AC⊥CD,∠ABC=60°,PA=AB=BC,
E是PC的中点.求证:
(Ⅰ)CD⊥AE;
(Ⅱ)PD⊥平面ABE.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,四棱锥P-ABCD中,底面ABCD是直角梯形,AB∥CD,∠DAB=60°,AB=AD=2CD=2,侧面PAD⊥底面ABCD,且△PAD为等腰直角三角形,∠APD=90°,M为AP的中点.
(1)求证:AD⊥PB;
(2)求三棱锥P-MBD的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,四棱锥P-ABCD的底面ABCD是矩形,AB=2,BC=
2
,且侧面PAB是正三角形,平面PAB⊥平面ABCD.
(1)求证:PD⊥AC;
(2)在棱PA上是否存在一点E,使得二面角E-BD-A的大小为45°,若存在,试求
AE
AP
的值,若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,四棱锥P-ABCD中,底面ABCD为矩形,PA⊥底面ABCD,且PA=AB=1,AD=
3
,点F是PB中点.
(Ⅰ)若E为BC中点,证明:EF∥平面PAC;
(Ⅱ)若E是BC边上任一点,证明:PE⊥AF;
(Ⅲ)若BE=
3
3
,求直线PA与平面PDE所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,四棱锥P-ABCD,PA⊥平面ABCD,ABCD是直角梯形,DA⊥AB,CB⊥AB,PA=2AD=BC=2,AB=2
2
,设PC与AD的夹角为θ.
(1)求点A到平面PBD的距离;
(2)求θ的大小;当平面ABCD内有一个动点Q始终满足PQ与AD的夹角为θ,求动点Q的轨迹方程.

查看答案和解析>>

同步练习册答案