精英家教网 > 高中数学 > 题目详情

已知首项为1,公比为q(q≠-1)的无穷等比数列{an}的前n项和为Sn,设,求

答案:
解析:

  解:当时,(3分)

  当时,(5分)

  若(7分)

  若(10分)

  综上:当时,;当时,(12分)


练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知无穷数列{an}中,a1,a2,…,am构成首项为2,公差为-2的等差数列am+1,am+2,…,a2m,构成首项为
1
2
,公比为
1
2
的等比数列,其中m≥3,m∈N+
(l)当1≤n≤2m,n∈N+,时,求数列{an}的通项公式;
(2)若对任意的n∈N+,都有an+2m=an成立.
①当a27=
1
64
时,求m的值;
②记数列{an}的前n项和为Sn.判断是否存在m,使得S4m+1≥2成立?若存在,求出m的值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2011•盐城二模)已知数列{an}单调递增,且各项非负,对于正整数K,若任意的i,j(1≤i≤j≤K),aj-ai仍是{an}中的项,则称数列{an}为“K项可减数列”.
(1)已知数列{an}是首项为2,公比为2的等比数列,且数列{an-2}是“K项可减数列”,试确定K的最大值;
(2)求证:若数列{an}是“K项可减数列”,则其前n项的和Sn=
n2
an(n=1,2,…,K)

(3)已知{an}是各项非负的递增数列,写出(2)的逆命题,判断该逆命题的真假,并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•衡阳模拟)已知无穷数列{an}中,a1,a2,…,an是首项为10,公差为-2的等差数列;an+1,an+2,…,a2n是首项为
1
2
,公比为
1
2
的等比数列(m≥3,m∈N*),并对任意n∈N*,均有an+2n=an成立.
(1)当m=12时,求a2012
(2)若a52=
1
128
,试求m的值;
(3)判断是否存在m,使S128m+3≥2012成立,若存在,求出m的值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源:2014届广东省陆丰市高二第二次月考理科数学试卷(解析版) 题型:解答题

(本小题满分14分)已知是首项为19,公差d=-2的等差数列,的前n项和.(1)求通项公式

(2)设是首项为1,公比为3的等比数列,求数列的通项公式及其前n项和

 

查看答案和解析>>

同步练习册答案