【题目】已知椭圆
的离心率为
,以椭圆
的任意三个顶点为顶点的三角形的面积是
.
(1)求椭圆
的方程;
(2)设
是椭圆
的右顶点,点
在
轴上.若椭圆
上存在点
,使得
,求点
横坐标的取值范围.
科目:高中数学 来源: 题型:
【题目】已知椭圆C:
+
=1(a>b>0)经过点(1,
),且焦距为2
.
(1)求椭圆C方程;
(2)椭圆C的左,右焦点分别为F1,F2,过点F2的直线l与椭圆C交于A,B两点,求△F2AB面积S的最大值并求出相应直线l的方程.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】《九章算术》中,将底面是直角三角形的直三棱柱称之为“堑堵”,已知某“堑堵”的三视图如图所示,则该“堑堵”的外接球的表面积为( )
![]()
A.
B.
C.
D. ![]()
【答案】B
【解析】几何体如图,球心为O,半径为
,表面积为
,选B.
![]()
点睛:涉及球与棱柱、棱锥的切、接问题时,一般过球心及多面体中的特殊点(一般为接、切点)或线作截面,把空间问题转化为平面问题,再利用平面几何知识寻找几何体中元素间的关系,或只画内切、外接的几何体的直观图,确定球心的位置,弄清球的半径(直径)与该几何体已知量的关系,列方程(组)求解.
【题型】单选题
【结束】
9
【题目】
是双曲线
的左右焦点,过
且斜率为1的直线与两条渐近线分别交于
两点,若
,则双曲线的离心率为( )
A.
B.
C.
D. ![]()
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】经调查,3个成年人中就有一个高血压,那么什么是高血压?血压多少是正常的?经国际卫生组织对大量不同年龄的人群进行血压调查,得出随年龄变化,收缩压的正常值变化情况如下表:
![]()
其中:
,
, ![]()
![]()
(1)请画出上表数据的散点图;
(2)请根据上表提供的数据,用最小二乘法求出
关于
的线性回归方程
;(
的值精确到0.01)
(3)若规定,一个人的收缩压为标准值的0.9~1.06倍,则为血压正常人群;收缩压为标准值的1.06~1.12倍,则为轻度高血压人群;收缩压为标准值的1.12~1.20倍,则为中度高血压人群;收缩压为标准值的1.20倍及以上,则为高度高血压人群.一位收缩压为180mmHg的70岁的老人,属于哪类人群?
【答案】(1)答案见解析;(2)
;(3)中度高血压人群.
【解析】试题分析:(1)将数据对应描点,即得散点图,(2)先求均值,再代人公式求
,利用
求
,(3)根据回归直线方程求自变量为180时对应函数值,再求与标准值的倍数,确定所属人群.
试题解析:(1) ![]()
(2)![]()
![]()
∴![]()
![]()
∴回归直线方程为
.
(3)根据回归直线方程的预测,年龄为70岁的老人标准收缩压约为
(mmHg)∵![]()
∴收缩压为180mmHg的70岁老人为中度高血压人群.
【题型】解答题
【结束】
19
【题目】如图,四棱柱
的底面为菱形,
,
,
为
中点.
(1)求证:
平面
;
(2)若
底面
,且直线
与平面
所成线面角的正弦值为
,求
的长.
![]()
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在直角坐标坐标系
中,曲线
的参数方程为
(
为参数),曲线
:
.以
为极点,
轴的非负半轴为极轴,与直角坐标系
取相同的长度单位,建立极坐标系.
(1)求曲线
的极坐标方程;
(2)射线
(
)与曲线
的异于极点的交点为
,与曲线
的交点为
,求
.
【答案】(1)
的极坐标方程为
,
的极坐标方程为
;(2)
.
【解析】试题分析:(1)先根据三角函数平方关系消参数得曲线
,再根据
将曲线
的
极坐标方程;(2)将
代人曲线
的极坐标方程,再根据
求
.
试题解析:(1)曲线
的参数方程
(
为参数)
可化为普通方程
,
由
,可得曲线
的极坐标方程为
,
曲线
的极坐标方程为
.
(2)射线
(
)与曲线
的交点
的极径为
,
射线
(
)与曲线
的交点
的极径满足
,解得
,
所以
.
【题型】解答题
【结束】
23
【题目】设函数
.
(1)设
的解集为
,求集合
;
(2)已知
为(1)中集合
中的最大整数,且
(其中
,
,
为正实数),求证:
.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知向量
,
,函数
.
(1)求
的最小正周期及
图象的对称轴方程;
(2)若先将
的图象上每个点纵坐标不变,横坐标变为原来的2倍,然后再向左平移
个单位长度得到函数
的图象,求函数
在区间
内的所有零点之和.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知向量
,其中
.函数
的图象过点
,点
与其相邻的最高点的距离为4.
(Ⅰ)求函数
的单调递减区间;
(Ⅱ)计算
的值;
(Ⅲ)设函数
,试讨论函数
在区间 [0,3] 上的零点个数.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】济南市某中学高三年级有1000名学生参加学情调研测试,用简单随机抽样的方法抽取了一个容量为50的样本,得到数学成绩的频率分布直方图如图所示.
![]()
(1)求第四个小矩形的高,并估计本校在这次统测中数学成绩不低于120分的人数和这1000名学生的数学平均分;
(2)已知样本中,成绩在[140,150]内的有2名女生,现从成绩在这个分数段的学生中随机选取2人做学习交流,求选取的两人中至少有一名女生的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】假设有一套住房的房价从2002年的20万元上涨到2012年的40万元,下表给出了两种价格增长方式,其中
是按直线上升的房价,
是按指数增长的房价,t是2002年以来经过的年数.
t | 0 | 5 | 10 | 15 | 20 |
| 20 | 30 | 40 | 50 | 60 |
| 20 |
| 40 |
| 80 |
(1)求函数
的解析式;
(2)求函数
的解析式;
(3)完成上表空格中的数据,并在同一直角坐标系中画出两个函数的图象,然后比较两种价格增长方式的差异.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com