精英家教网 > 高中数学 > 题目详情

【题目】经调查,3个成年人中就有一个高血压,那么什么是高血压?血压多少是正常的?经国际卫生组织对大量不同年龄的人群进行血压调查,得出随年龄变化,收缩压的正常值变化情况如下表:

其中:

(1)请画出上表数据的散点图;

(2)请根据上表提供的数据,用最小二乘法求出关于的线性回归方程;(的值精确到0.01)

(3)若规定,一个人的收缩压为标准值的0.9~1.06倍,则为血压正常人群;收缩压为标准值的1.06~1.12倍,则为轻度高血压人群;收缩压为标准值的1.12~1.20倍,则为中度高血压人群;收缩压为标准值的1.20倍及以上,则为高度高血压人群.一位收缩压为180mmHg的70岁的老人,属于哪类人群?

【答案】(1)答案见解析;(2) (3)中度高血压人群.

【解析】试题分析:(1将数据对应描点,即得散点图,2先求均值,再代人公式求,利用,(3根据回归直线方程求自变量为180时对应函数值,再求与标准值的倍数,确定所属人群.

试题解析:(1)

(2)

∴回归直线方程为.

3)根据回归直线方程的预测,年龄为70岁的老人标准收缩压约为mmHg

∴收缩压为180mmHg的70岁老人为中度高血压人群.

型】解答
束】
19

【题目】如图,四棱柱的底面为菱形, 中点.

(1)求证: 平面

(2)若底面,且直线与平面所成线面角的正弦值为,求的长.

【答案】(1)证明见解析;(2)2.

【解析】试题分析:(1的中点,根据平几知识可得四边形是平行四边形,即得,再根据线面平行判定定理得结论,2根据条件建立空间直角坐标系,设立各点坐标,利用方程组解得平面一个法向量,根据向量数量积求向量夹角,再根据线面角与向量夹角互余关系列等式,解得的长.

试题解析:(1)证明:设的中点,连

因为,又所以

所以四边形是平行四边形,

所以

平面 平面

所以平面.

(2)因为是菱形,且

所以是等边三角形

中点,则

因为平面

所以

建立如图的空间直角坐标系,令

设平面的一个法向量为

,设直线与平面所成角为

解得,故线段的长为2.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】过原点的一条直线与椭圆=1ab0)交于AB两点,以线段AB为直径的圆过该椭圆的右焦点F2,若∠ABF2[],则该椭圆离心率的取值范围为(  )

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】若定义在R上的偶函数满足,且, ,则函数的零点个数是( )

A. 6B. 8C. 2D. 4

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】是两条不同的直线, 是两个不同的平面,则下列命题中正确的是( )

A. ,则

B. , ,则

C. , ,则

D. ,且,点,直线,则

【答案】C

【解析】A. ,则

B. , ,则无交点,即平行或异面;

C. , ,过作平面与分别交于直线s,t,则, ,所以t,再根据线面平行判定定理得,因为 ,所以,即

D. ,且,点,直线,当B在平面内时才有,

综上选C.

型】单选题
束】
11

【题目】甲、乙、丙、丁四位同学参加比赛,只有其中三位获奖.甲说:“乙或丙未获奖”;乙说:“甲、丙都获奖”;丙说:“我未获奖”;丁说:“乙获奖”.四位同学的话恰有两句是对的,则( )

A. 甲和乙不可能同时获奖 B. 丙和丁不可能同时获奖

C. 乙和丁不可能同时获奖 D. 丁和甲不可能同时获奖

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】f(n)是定义在N*上的增函数,f(4)=5,且满足:

①任意n∈N*,f(n) Z;②任意mn∈N*,有f(m)f(n)=f(mn)+f(mn-1).

(1)求f(1),f(2),f(3)的值;

(2)求f(n)的表达式.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】椭圆:的左、右焦点分别为,若椭圆过点.

(1)求椭圆的方程;

(2)若为椭圆的左、右顶点, )为椭圆上一动点,设直线分别交直线 于点,判断线段为直径的圆是否经过定点,若是,求出该定点坐标;若不恒过定点,说明理由.

【答案】(1) ;(2)答案见解析.

【解析】试题分析:(1将点坐标代人椭圆方程 并与离心率联立方程组,解得 2根据点斜式得直线方程,与直线联立解得点坐标,根据向量关系得为直径的圆方程,最后代人椭圆方程进行化简,并根据恒等式成立条件求定点坐标.

试题解析:(1)由已知

∵椭圆过点

联立①②得

∴椭圆方程为

(2)设,已知

,∴

都有斜率

将④代入③得

方程

方程

由对称性可知,若存在定点,则该定点必在轴上,设该定点为

,∴

∴存在定点以线段为直径的圆恒过该定点.

点睛:定点的探索与证明问题

(1)探索直线过定点时,可设出直线方程为,然后利用条件建立等量关系进行消元,借助于直线系的思想找出定点.

(2)从特殊情况入手,先探求定点,再证明与变量无关.

型】解答
束】
21

【题目】已知函数,曲线处的切线经过点.

(1)证明:

(2)若当时, ,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的离心率为,以椭圆的任意三个顶点为顶点的三角形的面积是

1求椭圆的方程;

2)设是椭圆的右顶点,点轴上若椭圆上存在点,使得,求点横坐标的取值范围

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下图是某省从121日至224日的新冠肺炎每日新增确诊病例变化曲线图.

若该省从121日至224日的新冠肺炎每日新增确诊人数按日期顺序排列构成数列的前n项和为,则下列说法中正确的是(

A.数列是递增数列B.数列是递增数列

C.数列的最大项是D.数列的最大项是

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中,曲线的参数方程为 为参数),以坐标原点为极点, 轴正半轴为极轴建立极坐标系,直线的极坐标方程为,若直线与曲线相切;

(1)求曲线的极坐标方程;

(2)在曲线上取两点 与原点构成,且满足,求面积的最大值.

【答案】(1);(2)

【解析】试题分析:(1)利用极坐标与直角坐标的互化公式可得直线的直角坐标方程为

,消去参数可知曲线是圆心为,半径为的圆,由直线与曲线相切,可得: ;则曲线C的方程为, 再次利用极坐标与直角坐标的互化公式可得

可得曲线C的极坐标方程.

(2)由(1)不妨设M(),,(),

由此可求面积的最大值.

试题解析:(1)由题意可知直线的直角坐标方程为

曲线是圆心为,半径为的圆,直线与曲线相切,可得: ;可知曲线C的方程为

所以曲线C的极坐标方程为

.

(2)由(1)不妨设M(),,(),

时,

所以△MON面积的最大值为.

型】解答
束】
23

【题目】已知函数的定义域为

(1)求实数的取值范围;

(2)设实数的最大值,若实数 满足,求的最小值.

查看答案和解析>>

同步练习册答案