【题目】已知向量
,
,函数
.
(1)求
的最小正周期及
图象的对称轴方程;
(2)若先将
的图象上每个点纵坐标不变,横坐标变为原来的2倍,然后再向左平移
个单位长度得到函数
的图象,求函数
在区间
内的所有零点之和.
科目:高中数学 来源: 题型:
【题目】已知
是公差不为零的等差数列,满足
,且
、
、
成等比数列.
(1)求数列
的通项公式;
(2)设数列
满足
,求数列
的前
项和
.
【答案】(1)
;(2)![]()
【解析】试题分析:(1)设等差数列
的公差为
,由a3=7,且
、
、
成等比数列.可得
,解之得即可得出数列
的通项公式;
2)由(1)得
,则
,由裂项相消法可求数列
的前
项和
.
试题解析:(1)设数列
的公差为
,且
由题意得
,
即
,解得
,
所以数列
的通项公式
.
(2)由(1)得![]()
,
![]()
.
【题型】解答题
【结束】
18
【题目】四棱锥
的底面
为直角梯形,
,
,
,
为正三角形.
![]()
(1)点
为棱
上一点,若
平面
,
,求实数
的值;
(2)求点B到平面SAD的距离.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设
是两条不同的直线,
是两个不同的平面,则下列命题中正确的是( )
A. 若
,
,则![]()
B. 若
,
,则![]()
C. 若
,
,
,则![]()
D. 若
,且
,点
,直线
,则![]()
【答案】C
【解析】A. 若
,
,则
或
;
B. 若
,
,则
无交点,即平行或异面;
C. 若
,
,
,过
作平面与
分别交于直线s,t,则
,
,所以
t,再根据线面平行判定定理得
,因为
,
,所以
,即![]()
D. 若
,且
,点
,直线
,当B在平面
内时才有
,
综上选C.
【题型】单选题
【结束】
11
【题目】甲、乙、丙、丁四位同学参加比赛,只有其中三位获奖.甲说:“乙或丙未获奖”;乙说:“甲、丙都获奖”;丙说:“我未获奖”;丁说:“乙获奖”.四位同学的话恰有两句是对的,则( )
A. 甲和乙不可能同时获奖 B. 丙和丁不可能同时获奖
C. 乙和丁不可能同时获奖 D. 丁和甲不可能同时获奖
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】椭圆
:
的左、右焦点分别为
、
,若椭圆过点
.
(1)求椭圆
的方程;
(2)若
为椭圆的左、右顶点,
(
)为椭圆上一动点,设直线
分别交直线
:
于点
,判断线段
为直径的圆是否经过定点,若是,求出该定点坐标;若不恒过定点,说明理由.
![]()
【答案】(1)
;(2)答案见解析.
【解析】试题分析:(1)将点坐标代人椭圆方程 并与离心率联立方程组,解得
,
(2)根据点斜式得直线
方程,与直线
联立解得点
坐标,根据向量关系得
为直径的圆方程,最后代人椭圆方程进行化简,并根据恒等式成立条件求定点坐标.
试题解析:(1)由已知
,
∴
①
∵椭圆过点
,
∴
②
联立①②得
, ![]()
∴椭圆方程为![]()
![]()
(2)设
,已知![]()
∵
,∴![]()
∴
都有斜率
∴![]()
∴
③
∵![]()
∴
④
将④代入③得![]()
设
方程![]()
∴
方程![]()
∴![]()
由对称性可知,若存在定点,则该定点必在
轴上,设该定点为![]()
则![]()
∴![]()
∴
,∴![]()
∴存在定点
或
以线段
为直径的圆恒过该定点.
点睛:定点的探索与证明问题
(1)探索直线过定点时,可设出直线方程为
,然后利用条件建立
等量关系进行消元,借助于直线系的思想找出定点.
(2)从特殊情况入手,先探求定点,再证明与变量无关.
【题型】解答题
【结束】
21
【题目】已知函数
,曲线
在
处的切线经过点
.
(1)证明:
;
(2)若当
时,
,求
的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆
的离心率为
,以椭圆
的任意三个顶点为顶点的三角形的面积是
.
(1)求椭圆
的方程;
(2)设
是椭圆
的右顶点,点
在
轴上.若椭圆
上存在点
,使得
,求点
横坐标的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在三棱柱ABC-A1B1C1中,已知AA1⊥底面ABC,AC⊥BC,四边形BB1C1C为正方形,设AB1的中点为D,B1C∩BC1=E.
![]()
求证:(1)DE∥平面AA1C1C;
(2)BC1⊥平面AB1C.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】下图是某省从1月21日至2月24日的新冠肺炎每日新增确诊病例变化曲线图.
![]()
若该省从1月21日至2月24日的新冠肺炎每日新增确诊人数按日期顺序排列构成数列
,
的前n项和为
,则下列说法中正确的是( )
A.数列
是递增数列B.数列
是递增数列
C.数列
的最大项是
D.数列
的最大项是![]()
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】根据抛物线的光学原理:平行于抛物线的轴的光线,经抛物线反射后,反射光线必经过焦点.然后求解此题:有一条光线沿直线
射到抛物线
(
)上的一点
,经抛物线反射后,反射光线所在直线的斜率为
.
(Ⅰ)求抛物线的标准方程;
(Ⅱ)过定点
的直线l与抛物线交于
两点,与直线
交于Q点,若
,
=
,求
的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=loga(x+1),g(x)=2loga(2x+t)(t∈R),其中x∈[0,15],a>0,且a≠1.
(1)若1是关于x的方程f(x)﹣g(x)=0的一个解,求t的值;
(2)当0<a<1时,不等式f(x)≥g(x)恒成立,求t的取值范围.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com