【题目】已知椭圆C:
的左焦点为F(﹣1,0),离心率为
,过点F的直线l与椭圆C交于A、B两点.
(Ⅰ)求椭圆C的方程;
(Ⅱ)设过点F不与坐标轴垂直的直线交椭圆C于A、B两点,线段AB的垂直平分线与x轴交于点G,求点G横坐标的取值范围.
【答案】
1;(Ⅱ)(
,0)
【解析】
(Ⅰ)由题意可知:c=1,a2=b2﹣c2,e
,由此求出椭圆的方程.(II)设直线AB的方程为y=k(x+1)(k≠0),联立方程,得(1+2k2)x2+4k2x+2k2﹣2=0.由直线AB过椭圆的左焦点F,记A(x1,y1),B(x2,y2),AB的中点N(x0,y0),x1+x2
,x0
,垂直平分线NG的方程为y﹣y0
,由此能求出点G横坐标的取值范围.
(Ⅰ)由题意可知:c=1,a2=b2﹣c2,e![]()
解得:a
,b=1
故椭圆的方程为:
1
(II)设直线AB的方程为y=k(x+1)(k≠0),
与椭圆联立,得(1+2k2)x2+4k2x+2k2﹣2=0
∵直线AB过椭圆的左焦点F∴方程有两个不等实根.
记A(x1,y1),B(x2,y2),AB的中点N(x0,y0)
则x1+x2![]()
x0![]()
垂直平分线NG的方程为y﹣y0
,
令y=0,得xG=x0+ky0![]()
.
∵k≠0,∴
0
∴点G横坐标的取值范围为(
,0).
科目:高中数学 来源: 题型:
【题目】定义:对于实数
和两定点
,在某图形上恰有
个不同的点
,使得
,称该图形满足“
度契合”.若边长为4的正方形
中,
,且该正方形满足“4度契合”,则实数
的取值范围是__________.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系xOy中,动点
到两坐标轴的距离之和等于它到定点
的距离,记点P的轨迹为
,给出下列四个结论:①
关于原点对称;②
关于直线
对称;③直线
与
有无数个公共点;④在第一象限内,
与x轴和y轴所围成的封闭图形的面积小于
.其中正确的结论是________.(写出所有正确结论的序号)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某海湿地如图所示,A、B和C、D分别是以点O为中心在东西方向和南北方向设置的四个观测点,它们到点O的距离均为
公里,实线PQST是一条观光长廊,其中,PQ段上的任意一点到观测点C的距离比到观测点D的距离都多8公里,QS段上的任意一点到中心点O的距离都相等,ST段上的任意一点到观测点A的距离比到观测点B的距离都多8公里,以O为原点,AB所在直线为x轴建立平面直角坐标系xOy.
![]()
(1)求观光长廊PQST所在的曲线的方程;
(2)在观光长廊的PQ段上,需建一服务站M,使其到观测点A的距离最近,问如何设置服务站M的位置?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某公司推出一新款手机,因其功能强大,外观新潮,一上市便受到消费者争相抢购,销量呈上升趋势.散点图是该款手机上市后前6周的销售数据.
![]()
(Ⅰ)根据散点图,用最小二乘法求
关于
的线性回归方程,并预测该款手机第8周的销量;
(Ⅱ)为了分析市场趋势,该公司市场部从前6周的销售数据中随机抽取2周的数据,求抽到的这2周的销量均在20万台以下的概率.
参考公式:回归直线方程
,其中:
,
.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,一块长方形区域
,
,
,在边
的中点
处有一个可转动的探照灯,其照射角
始终为
,设
,探照灯照射在长方形
内部区域的面积为
.
(1)求
关于
的函数关系式;
(2)当
时,求
的最大值.
![]()
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知四边形
,点
为线段
的中点,且
.
,
.现将△
沿
进行翻折,使得
°,得到图形如图所示,连接
.
![]()
(Ⅰ)若点
在线段
上,证明:
;
(Ⅱ)若
点为
的中点,求点
到平面
的距离.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com