【题目】已知四边形
,点
为线段
的中点,且
.
,
.现将△
沿
进行翻折,使得
°,得到图形如图所示,连接
.
![]()
(Ⅰ)若点
在线段
上,证明:
;
(Ⅱ)若
点为
的中点,求点
到平面
的距离.
科目:高中数学 来源: 题型:
【题目】已知椭圆C:
的左焦点为F(﹣1,0),离心率为
,过点F的直线l与椭圆C交于A、B两点.
(Ⅰ)求椭圆C的方程;
(Ⅱ)设过点F不与坐标轴垂直的直线交椭圆C于A、B两点,线段AB的垂直平分线与x轴交于点G,求点G横坐标的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】汕头某家电企业要将刚刚生产的100台变频空调送往市内某商场,现有4辆甲型货车和8辆乙型货车可供调配,每辆甲型货车的运输费用是400元,可装空调20台,每辆乙型货车的运输费用是300元,可装空调10台,若每辆车至多运一次,则企业所花的最少运费为( )
A. 2000元B. 2200元C. 2400元D. 2800元
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知点F是拋物线C:y2=2px(p>0)的焦点,点M(x0,1)在C上,且|MF|=
.
(1)求p的值;
(2)若直线l经过点Q(3,-1)且与C交于A,B(异于M)两点,证明:直线AM与直线BM的斜率之积为常数.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】甲、乙两位同学分别做下面这道题目:在平面直角坐标系中,动点
到
的距离比
到
轴的距离大
,求
的轨迹.甲同学的解法是:解:设
的坐标是
,则根据题意可知
,化简得
; ①当
时,方程可变为
;②这表示的是端点在原点、方向为
轴正方向的射线,且不包括原点; ③当
时,方程可变为
; ④这表示以
为焦点,以直线
为准线的抛物线;⑤所以
的轨迹为端点在原点、方向为
轴正方向的射线,且不包括原点和以
为焦点,以直线
为准线的抛物线. 乙同学的解法是:解:因为动点
到
的距离比
到
轴的距离大
. ①如图,过点
作
轴的垂线,垂足为
. 则
.设直线
与直线
的交点为
,则
; ②即动点
到直线
的距离比
到
轴的距离大
; ③所以动点
到
的距离与
到直线
的距离相等;④所以动点
的轨迹是以
为焦点,以直线
为准线的抛物线; ⑤甲、乙两位同学中解答错误的是________(填“甲”或者“乙”),他的解答过程是从_____处开始出错的(请在横线上填写① 、②、③、④ 或⑤ ).
![]()
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如果底面是菱形的直棱柱(侧棱与底面垂直的棱柱)
的所有棱长都相等,
,E,M,N分别为![]()
![]()
的中点,现有下列四个结论:①
平面
②
③
平面
④异面真线
与MN所成的角的余弦值为
,其中正确结论的个数为( )
A.1个B.2个C.3个D.4个
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】下列说法正确的是( )
A.命题“若
.则a,b中至少有一个不小于1”的逆命题是一个真命题
B.命题“负数的平方是正数”是特称命题
C.命题“设a,
,若
,则
或
”是一个真命题
D.常数数列既是等差数列也是等比数列
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在平面直角坐标系
中,椭圆C过点
,焦点
,圆O的直径为
.
![]()
(1)求椭圆C及圆O的方程;
(2)设直线l与圆O相切于第一象限内的点P.
①若直线l与椭圆C有且只有一个公共点,求点P的坐标;
②直线l与椭圆C交于
两点.若
的面积为
,求直线l的方程.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com