【题目】某公司推出一新款手机,因其功能强大,外观新潮,一上市便受到消费者争相抢购,销量呈上升趋势.散点图是该款手机上市后前6周的销售数据.
![]()
(Ⅰ)根据散点图,用最小二乘法求
关于
的线性回归方程,并预测该款手机第8周的销量;
(Ⅱ)为了分析市场趋势,该公司市场部从前6周的销售数据中随机抽取2周的数据,求抽到的这2周的销量均在20万台以下的概率.
参考公式:回归直线方程
,其中:
,
.
【答案】(Ⅰ)
,25万台(Ⅱ)![]()
【解析】
(Ⅰ)根据散点图中的数据求出
,再结合所给公式求出
,即可得到所求回归方程,进而可进行预测;(Ⅱ)列举出所有的基本事件和事件“抽到的这2周的销量均在20万台以下”包含的基本事件,然后根据古典概型概率求解即可.
(Ⅰ)由题意得
,
,
,
,
,
.
所以
,
所以
.
所以所求的线性回归直线方程为
.
当
时,
,所以预计该款手机第8周的销量为25万台.
(Ⅱ)由题意可知,前6周中有4周销量在20万台以下,分别记为
,
,
,
,有2周的销量不在20万台以下,分别记为
,
.
从中随机抽取2周的所有基本事件为:
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,共15个.
设事件
为“抽到的这2周的销量均在20万台以下”,则事件
包含的基本事件有:
,
,
,
,
,
,共6个.
所以
,
即抽到的这2周的销量均在20万台以下的概率为
.
科目:高中数学 来源: 题型:
【题目】已知椭圆
的离心率为
,M是椭圆C的上顶点,
,F2是椭圆C的焦点,
的周长是6.
(Ⅰ)求椭圆C的标准方程;
(Ⅱ)过动点P(1,t)作直线交椭圆C于A,B两点,且|PA|=|PB|,过P作直线l,使l与直线AB垂直,证明:直线l恒过定点,并求此定点的坐标.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系
中,已知圆
经过
,
,
三点,
是线段
上的动点,
,
是过点
且互相垂直的两条直线,其中
交
轴于点
,
交圆
于
、
两点.
(1)若
,求直线
的方程;
(2)若
是使
恒成立的最小正整数.
①求
的值;
②求三角形
的面积的最小值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆C:
的左焦点为F(﹣1,0),离心率为
,过点F的直线l与椭圆C交于A、B两点.
(Ⅰ)求椭圆C的方程;
(Ⅱ)设过点F不与坐标轴垂直的直线交椭圆C于A、B两点,线段AB的垂直平分线与x轴交于点G,求点G横坐标的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆C:
1(a>b>0)经过点(
,1),F(0,1)是C的一个焦点,过F点的动直线l交椭圆于A,B两点.
(1)求椭圆C的方程
(2)是否存在定点M(异于点F),对任意的动直线l都有kMA+kMB=0,若存在求出点M的坐标,若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆
的离心率为
,其短轴的两个端点与长轴的一个端点构成的三角形的面积为
.
(1)求椭圆
的标准方程;
(2)直线
与圆
相切,并与椭圆
交于不同的两点
和
,若
为坐标原点),求线段
长度的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】汕头某家电企业要将刚刚生产的100台变频空调送往市内某商场,现有4辆甲型货车和8辆乙型货车可供调配,每辆甲型货车的运输费用是400元,可装空调20台,每辆乙型货车的运输费用是300元,可装空调10台,若每辆车至多运一次,则企业所花的最少运费为( )
A. 2000元B. 2200元C. 2400元D. 2800元
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】下列说法正确的是( )
A.命题“若
.则a,b中至少有一个不小于1”的逆命题是一个真命题
B.命题“负数的平方是正数”是特称命题
C.命题“设a,
,若
,则
或
”是一个真命题
D.常数数列既是等差数列也是等比数列
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com