【题目】已知关于的方程在区间上有两个实数根,,且,则实数的取值范围是( )
A. B. C. D.
【答案】C
【解析】分析: 将方程化简:sin(+x)+cos(﹣x)=sinx+cosx=sin(x+)=a,根据在区间[0,2π)上有两个实根x1,x2,且|x1﹣x2|≥π,对两个实根 x1,x2的位置讨论,结合正弦函数可得答案.
详解: 由题得sin(+x)+cos(﹣x)=sinx+cosx=sin(x+)=a
转化为函数y=sin(x+)与函数y=a有两个交点,区间[0,2π) 上有两个实根 x1,x2,
由x∈[0,2π)
则x+∈[,),
设 x1>x2,由x1﹣x2≥π,可得≥x2≥,
当≥x2≥时,结合正弦函数可知,不存在a的值;
当≤x2≤时,对应的2π≤x1<,
结合正弦函数可知,函数y=sin(x+)与函数y=a有两个交点,
此时可得:a∈[0,1).
故答案为:C.
科目:高中数学 来源: 题型:
【题目】某人设计一项单人游戏,规则如下:先将一棋子放在如图所示正方形(边长为2个单位)的顶点处,然后通过掷骰子来确定棋子沿正方形的边按逆时针方向行走的单位,如果掷出的点数为,则棋子就按逆时针方向行走个单位,一直循环下去.则某人抛掷三次骰子后棋子恰好又回到点处的所有不同走法共有( )
A. 22种 B. 24种 C. 25种 D. 27种
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】若椭圆:上有一动点,到椭圆的两焦点,的距离之和等于,到直线的最大距离为.
(Ⅰ)求椭圆的方程;
(Ⅱ)若过点的直线与椭圆交于不同两点、,(为坐标原点)且,求实数的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】选修4-4:坐标系与参数方程
在平面直角坐标系中,直线的参数方程为(为参数),直线与曲线:交于,两点.
(Ⅰ)求的长;
(Ⅱ)在以为极点,轴的正半轴为极轴建立的极坐标系中,设点的极坐标为,求点到线段中点的距离.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】若椭圆:上有一动点,到椭圆的两焦点,的距离之和等于,到直线的最大距离为.
(Ⅰ)求椭圆的方程;
(Ⅱ)若过点的直线与椭圆交于不同两点、,(为坐标原点)且,求实数的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆的中心在坐标原点,焦点在轴上,短轴长为,且两个焦点和短轴的两个端点恰为一个正方形的顶点.
(1)求椭圆的方程;
(2)设过右焦点与轴不垂直的直线与椭圆交于、两点.在线段上是否存在点,使得以、为邻边的平行四边形是菱形?若存在,求出的取值范围;若不存在,
请说明理由;
(3)设点在椭圆上运动,,且点到直线的距离等于,试求动点的轨
迹方程.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如果直线y=kx+1与圆x2+y2+kx+my﹣4=0交于M、N两点,且M、N关于直线x+y=0对称,则不等式组:表示的平面区域的面积是( )
A.
B.
C.1
D.2
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】选修4-4:坐标系与参数方程
在直角坐标系中,曲线的参数方程为(为参数,),以直角坐标系的原点为极点,以轴的正半轴为极轴建立坐标系,圆的极坐标方程为.
(1)求圆的直角坐标方程(化为标准方程)及曲线的普通方程;
(2)若圆与曲线的公共弦长为,求的值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com