精英家教网 > 高中数学 > 题目详情
12.下列对于函数f(x)=2+2cos2x,x∈(0,3π)的判断不正确的是(  )
A.对于任意x∈(0,3π),都有f(x1)≤f(x)≤f(x2),则|x1-x2|的最小值为$\frac{π}{2}$
B.存在a∈R,使得函数f(x+a)为偶函数
C.存在x0∈(0,3π),使得f(x0)=4
D.函数f(x)在区间$[\frac{π}{2},\frac{5π}{4}]$内单调递增

分析 化简f(x)=2+2cos2x=2+cos2x+1=3+cos2x,根据函数的周期性可判断A;取a=π进行验证,可判断B;根据三角函数的性质可判断C;根据函数的单调性可判断D.

解答 解:f(x)=2+2cos2x=2+cos2x+1=3+cos2x,
对于A,函数f(x)的周期为$T=\frac{2π}{2}=π$,对于任意x∈(0,3π),都有f(x1)≤f(x)≤f(x2),
可知f(x1)是函数的最小值,f(x2)是函数的最大值,|x1-x2|的最小值就是函数的半周期$\frac{π}{2}$,故A正确;
对于B,不妨取a=π,则函数f(x+a)=3+cos(2x+2π)=3+cos2x为偶函数,故B正确;
对于C,x=π∈(0,3π),cos2x=1,f(x)=4,故存在x0∈(0,3π),使得f(x0)=4,故C正确;
对于D,当x∈$[\frac{π}{2},\frac{5π}{4}]$时,2x∈$[π,\frac{5π}{2}]$,此时函数不具备单调性,故D不正确.
∴对于函数f(x)=2+2cos2x,x∈(0,3π)的判断不正确的是:D.
故选:D.

点评 本题考查了三角函数的图象与性质,解题的关键是掌握三角函数的性质及函数奇偶性的判断,是中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

2.通过市场调查,得到某产品的资金投入x(万元)与获得的利润y(万元)的数据,如表所示:
资金投入x23456
利润y23569
(Ⅰ)根据上表提供的数据,用最小二乘法求线性回归直线方程${\;}_{y}^{∧}$=bx+a;
(Ⅱ)现投入资金10(万元),求估计获得的利润为多少万元.
参考公式:回归直线的方程是:${\;}_{y}^{∧}$=${\;}_{b}^{∧}$x+${\;}_{a}^{∧}$,其中b=$\frac{{{\sum_{i=1}^{n}x}_{i}y}_{i}-{{n}_{x}^{-}}_{y}^{-}}{{{\sum_{i=1}^{n}x}_{i}^{2}-{n}_{x}^{-}}^{2}}$,${\;}_{a}^{∧}$=${\;}_{y}^{-}$-${\;}_{b}^{∧}$${\;}_{x}^{-}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.定义在R上的函数f(x)满足f(x-1)的对称轴为x=1,f(x+1)=$\frac{4}{f(x)}$(f(x)≠0),且在区间(1,2)上单调递减,已知α、β是钝角三角形中两锐角,则f(sinα)和f(cosβ)的大小关系是(  )
A.f(sinα)>f(cosβ)B.f(sinα)<f(cosβ)
C.f(sinα)=f(cosβ)D.以上情况均有可能

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.二次函数y=ax2+bx+c(x∈R)的部分对应值如表:
x-3-2-101234
y-6046640-6
则一元二次不等式ax2+bx+c>0的解集是(  )
A.{x|x<-2,或x>3}B.{x|x≤-2,或x≥3}C.{x|-2<x<3}D.{x|-2≤x≤3}

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.如图,为了测量河对岸A,B两点之间的距离.观察者找到了一个点C,从C可以观察到点A,B;找到了一个点D,从D可以观察到点A,C;找到了一个点E,从E可以观察到点B,C.并测量得到图中一些数据,其中$CD=2\sqrt{3}$,CE=4,∠ACB=60°,∠ACD=∠BCE=90°,∠ADC=60°,∠BEC=45°,则AB=2$\sqrt{7}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.如图是某社区的部分规划设计图,住宅区一边的边界曲线记为C,步行街(宽度不计)所在直线L与曲线C相切于点M,以点E为圆心,1百米为半径的圆的四分之一为大型超市,为方便住宅区居民购物休闲,该社区计划在步行街与大型超市之间铺设一条连接道路AB(宽度不计)以及修建花园广场.
根据相关数据,某同学建立了平面直角坐标系xOy,曲线C用函数模型y=ex-1+kx+b(k,b为常数)拟合.并求得直线l:y=2x,M(1,2),E(2$\sqrt{5}$,0),单位:百米.点A在l上,点B在$\widehat{FG}$上
(1)求曲线C的方程和AB的最短距离;
(2)若过点A作AP垂直于x轴,垂足为P,在空地△APB内截取一个面积最大的矩形,用来修建一个花园广场.要求矩形的一边在AB上.在连接道路AB最短时,求花园广场的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.已知函数f(x)=x2-2x+$\frac{1}{2}$,g(x)=x+$\frac{1}{x}$,集合M={(x,y)|f(x)+f(y)≤0},集合N={(x,y)|g(x)-g(y)>0},则从M中随机取一个点A,则A落在N中的概率为$\frac{1}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.在平面直角坐标系xOy中,F是抛物线C:y2=2px(p>0)的焦点,M是抛物线C上的任意一点,当M位于第一象限内时,△OFM外接圆的圆心到抛物线C准线的距离为$\frac{3}{2}$.
(1)求抛物线C的方程;
(2)过K(-1,0)的直线l交抛物线C于A,B两点,且$\overrightarrow{KA}=λ\overrightarrow{KB}(λ∈[2,3])$,点G为x轴上一点,且|GA|=|GB|,求点G的横坐标x0的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.不等式x2-3x+2≤0成立的充要条件是1≤x≤2.

查看答案和解析>>

同步练习册答案