精英家教网 > 高中数学 > 题目详情
3.定义在R上的函数f(x)满足f(x-1)的对称轴为x=1,f(x+1)=$\frac{4}{f(x)}$(f(x)≠0),且在区间(1,2)上单调递减,已知α、β是钝角三角形中两锐角,则f(sinα)和f(cosβ)的大小关系是(  )
A.f(sinα)>f(cosβ)B.f(sinα)<f(cosβ)
C.f(sinα)=f(cosβ)D.以上情况均有可能

分析 由平移图象可得y=f(x)的对称轴为x=0,由f(x)f(x+1)=4,将x换为x+1,可得f(x)的周期为2,由题意可得f(x)在(-1,0)上递减,在(0,1)上递增,由α,β是钝角三角形中两锐角,可得α+β<$\frac{π}{2}$,运用诱导公式和正弦函数的单调性,即可判断大小,得到结论.

解答 解:根据题意,f(x-1)的对称轴为x=1,可得y=f(x)的对称轴为x=0,即函数f(x)为偶函数,
又f(x)f(x+1)=4,
可得f(x+1)f(x+2)=4,即为f(x+2)=f(x),
函数f(x)为最小正周期为2的偶函数.
f(x)在区间(1,2)上单调递减,
可得f(x)在(-1,0)上递减,在(0,1)上递增,
又由α,β是钝角三角形中两锐角,可得α+β<$\frac{π}{2}$,
即有0<α<$\frac{π}{2}$-β<$\frac{π}{2}$,进而有sinα<sin($\frac{π}{2}$-β)=cosβ,
则f(sinα)<f(cosβ).
故选:B.

点评 本题考查函数的对称性和周期性的运用,考查偶函数的单调性的运用,同时考查三角形函数的诱导公式和正弦函数的单调性,考查运算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

13.若${(x+\frac{1}{2x})^n}$二项展开式中的前三项的系数成等差数列,则常数项为$\frac{35}{8}$.(用数字作答)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.设函数$f(x)=\frac{1}{2}(x-2a)+\frac{lnx}{x}$(a∈R).
(1)求f(x)的单调区间;
(2)曲线y=xf(x) 是否存在经过原点的切线,若存在,求出该切线方程,若不存在说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.近年来我国电子商务行业迎来篷勃发展的新机遇,2016年双11期间,某购物平台的销售业绩高达一千多亿人民币.与此同时,相关管理部门推出了针对电商的商品和服务的评价体系.现从评价系统中选出200次成功交易,并对其评价进行统计,对商品的好评率为0.6,对服务的好评率为0.75,其中对商品和服务都做出好评的交易为80次.
(Ⅰ)请完成如下列联表;
对服务好评对服务不满意合计
对 商品 好评
对商品不满意
合    计
(Ⅱ)是否可以在犯错误的概率不超过0.1%的前提下,认为商品好评与服务好评有关?
(Ⅲ)若针对商品的好评率,采用分层抽样的方式从这200次交易中取出5次交易,并从中选择两次交易进行客户回访,求只有一次好评的概率.
P(K2≥k)0.150.100.050.0250.0100.0050.001
k2.0722.7063.8415.0246.6357.87910.828
${K^2}=\frac{{n{{(ad-bc)}^2}}}{(a+b)(c+d)(a+c)(b+d)}$,其中n=a+b+c+d)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.设函数f(x)=log2x+ax+b(a>0),若存在实数b,使得对任意的x∈[t,t+2](t>0)都有|f(x)|≤1+a,则t的最小值是(  )
A.2B.1C.$\frac{3}{4}$D.$\frac{2}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.下列函数在(0,+∞)上是减函数的是(  )
A.f(x)=lnxB.f(x)=e-xC.$f(x)=\sqrt{x}$D.$f(x)=-\frac{1}{x}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知函数f(x)=x3-3x2+8.
(Ⅰ)求曲线y=f(x)在点(1,f(1))处的切线方程;
(Ⅱ)求f(x)的极大值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.下列对于函数f(x)=2+2cos2x,x∈(0,3π)的判断不正确的是(  )
A.对于任意x∈(0,3π),都有f(x1)≤f(x)≤f(x2),则|x1-x2|的最小值为$\frac{π}{2}$
B.存在a∈R,使得函数f(x+a)为偶函数
C.存在x0∈(0,3π),使得f(x0)=4
D.函数f(x)在区间$[\frac{π}{2},\frac{5π}{4}]$内单调递增

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.若a>0,b>0,且$\sqrt{a}+\sqrt{b}=1$,则$\frac{1}{a}+\frac{1}{b}$的最小值为,8.

查看答案和解析>>

同步练习册答案