精英家教网 > 高中数学 > 题目详情
15.已知函数f(x)=x3-3x2+8.
(Ⅰ)求曲线y=f(x)在点(1,f(1))处的切线方程;
(Ⅱ)求f(x)的极大值.

分析 (Ⅰ)求出函数的导数,计算f(1),f′(1)的值,求出切线方程即可;
(Ⅱ)解关于导函数的不等式,求出函数的单调区间,从而求出函数的极值.

解答 解:(Ⅰ)f′(x)=3x2-6x=3x(x-2),
f(1)=6,f′(1)=-3,
故切线方程是:y-6=-3(x-1),
整理得:3x+y-9=0;
(Ⅱ)由(Ⅰ)令f′(x)>0,解得:x>2或x<0,
令f′(x)<0,解得:0<x<2,
故f(x)在(-∞,0)递增,在(0,2)递减,在(2,+∞)递增,
故f(x)极大值=f(0)=8.

点评 本题考查了切线方程问题,考查函数的单调性、极值问题,考查导数的应用,是一道基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

5.根据回归系数b和回归截距$\widehat{a}$的计算公式可知:若y与x之间的一组数据为:
x1M345
y356N9
若拟合这5组数据的回归直线恒经过的点是(4,6),则表中的M的值为7,N的值为7.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.已知$\overrightarrow a=(-3,2,5)$,$\overrightarrow b=(1,x,-1)$,且$\overrightarrow a•\overrightarrow b=4$,则x的值是(  )
A.6B.5C.4D.3

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.定义在R上的函数f(x)满足f(x-1)的对称轴为x=1,f(x+1)=$\frac{4}{f(x)}$(f(x)≠0),且在区间(1,2)上单调递减,已知α、β是钝角三角形中两锐角,则f(sinα)和f(cosβ)的大小关系是(  )
A.f(sinα)>f(cosβ)B.f(sinα)<f(cosβ)
C.f(sinα)=f(cosβ)D.以上情况均有可能

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.已知过点P作曲线y=x3的切线有且仅有两条,则点P的坐标可能是(  )
A.(0,0)B.(0,1)C.(1,1)D.(-2,-1)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.二次函数y=ax2+bx+c(x∈R)的部分对应值如表:
x-3-2-101234
y-6046640-6
则一元二次不等式ax2+bx+c>0的解集是(  )
A.{x|x<-2,或x>3}B.{x|x≤-2,或x≥3}C.{x|-2<x<3}D.{x|-2≤x≤3}

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.如图,为了测量河对岸A,B两点之间的距离.观察者找到了一个点C,从C可以观察到点A,B;找到了一个点D,从D可以观察到点A,C;找到了一个点E,从E可以观察到点B,C.并测量得到图中一些数据,其中$CD=2\sqrt{3}$,CE=4,∠ACB=60°,∠ACD=∠BCE=90°,∠ADC=60°,∠BEC=45°,则AB=2$\sqrt{7}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.已知函数f(x)=x2-2x+$\frac{1}{2}$,g(x)=x+$\frac{1}{x}$,集合M={(x,y)|f(x)+f(y)≤0},集合N={(x,y)|g(x)-g(y)>0},则从M中随机取一个点A,则A落在N中的概率为$\frac{1}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.若a,b,c为实数,则下列结论正确的是(  )
A.若a>b,则ac2>bc2B.若a<b<0,则a2>abC.若a<b,则$\frac{1}{a}$$>\frac{1}{b}$D.若a>b>0,则$\frac{b}{a}$$>\frac{a}{b}$

查看答案和解析>>

同步练习册答案