精英家教网 > 高中数学 > 题目详情
13.若${(x+\frac{1}{2x})^n}$二项展开式中的前三项的系数成等差数列,则常数项为$\frac{35}{8}$.(用数字作答)

分析 由题意利用等差数列的性质求得n的值,在二项展开式的通项公式中,令x的幂指数等于零,求得r的值,可得常数项.

解答 解:∵${(x+\frac{1}{2x})^n}$二项展开式中的前三项的系数分别为${C}_{n}^{0}$、${C}_{n}^{1}$•$\frac{1}{2}$、${C}_{n}^{2}$•${(\frac{1}{2})}^{2}$,
若${(x+\frac{1}{2x})^n}$二项展开式中的前三项的系数成等差数列,则2•${C}_{n}^{1}$•$\frac{1}{2}$=${C}_{n}^{0}$+${C}_{n}^{2}$•${(\frac{1}{2})}^{2}$,
求得n=8,或 n=1(舍去),∴展开式的通项公式为Tr+1=${C}_{8}^{r}$•${(\frac{1}{2})}^{r}$•x8-2r
令8-2r=0,求得r=4,可得常数项为${C}_{8}^{4}$•${(\frac{1}{2})}^{4}$=$\frac{35}{8}$,
故答案为:$\frac{35}{8}$.

点评 本题主要考查等差数列的性质,二项展开式的通项公式,二项式系数的性质,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

12.在如图所示的程序框图中,若U=lg$\frac{1}{3}$•log3$\frac{1}{10}$,V=2${\;}^{lo{g}_{\frac{1}{2}}2}$,则输出的S=$\frac{1}{2}$,

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.若a=log30.6,b=30.6,c=0.63,则(  )
A.c>a>bB.a>b>cC.b>c>aD.a>c>b

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知⊙C1:(x+1)2+y2=1,⊙C2:(x-1)2+y2=r2(r>0),⊙C1内切⊙C2于点A,P是两圆公切线l上异于A的一点,直线PQ切⊙C1于点Q,PR切⊙C2于点R,且Q,R均不与A重合,直线C1Q,C2R相交于点M.
(1)求M的轨迹C的方程;
(2)若直线MC1与x轴不垂直,它与C的另一个交点为N,M′是点M关于x轴的对称点,求证:直线NM′过定点.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.中央电视台为了解一档诗歌类节目的收视情况,抽查东西两部各5个城市,得到观看该节目的人数(单位:千人)如茎叶图所示:其中一个数字被污损
(1)求东部各城市观看该节目观众平均人数超过西部各城市观看该节目观众平均人数的概率;
(2)随着节目的播出,极大激发了观众对诗歌知识的学习积累热情,从中获益匪浅.现从观看该节目的观众中随机统计了4位观众的周均学习诗歌知识的时间(单位:小时)与年龄(单位:岁),并制作了对照表(如表所示):
年龄x(岁)20304050
周均学习成语知识时间y(小时)2.5344.5
由表中数据,试求线性回归方程$\hat y=\hat bx+\hat a$,并预测年龄在60岁的观众周均学习诗歌知识的时间.
参考公式:$\stackrel{∧}{b}$=$\frac{\sum_{i=i}^{n}{x}_{i}{y}_{i}-n\overline{x}\overline{y}}{\sum_{i=i}^{n}{{x}_{i}}^{2}-n{\overline{x}}^{2}}$,$\stackrel{∧}{a}$=$\overline{y}$-$\stackrel{∧}{b}$$\overline{x}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.若用水量x与某种产品的产量y的回归直线方程是$\stackrel{∧}{y}$=2x+1250,若用水量为  50kg时,预计的某种产品的产量是(  )
A.1350 kgB.大于 1350 kgC.小于1350kgD.以上都不对

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.根据回归系数b和回归截距$\widehat{a}$的计算公式可知:若y与x之间的一组数据为:
x1M345
y356N9
若拟合这5组数据的回归直线恒经过的点是(4,6),则表中的M的值为7,N的值为7.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.通过市场调查,得到某产品的资金投入x(万元)与获得的利润y(万元)的数据,如表所示:
资金投入x23456
利润y23569
(Ⅰ)根据上表提供的数据,用最小二乘法求线性回归直线方程${\;}_{y}^{∧}$=bx+a;
(Ⅱ)现投入资金10(万元),求估计获得的利润为多少万元.
参考公式:回归直线的方程是:${\;}_{y}^{∧}$=${\;}_{b}^{∧}$x+${\;}_{a}^{∧}$,其中b=$\frac{{{\sum_{i=1}^{n}x}_{i}y}_{i}-{{n}_{x}^{-}}_{y}^{-}}{{{\sum_{i=1}^{n}x}_{i}^{2}-{n}_{x}^{-}}^{2}}$,${\;}_{a}^{∧}$=${\;}_{y}^{-}$-${\;}_{b}^{∧}$${\;}_{x}^{-}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.定义在R上的函数f(x)满足f(x-1)的对称轴为x=1,f(x+1)=$\frac{4}{f(x)}$(f(x)≠0),且在区间(1,2)上单调递减,已知α、β是钝角三角形中两锐角,则f(sinα)和f(cosβ)的大小关系是(  )
A.f(sinα)>f(cosβ)B.f(sinα)<f(cosβ)
C.f(sinα)=f(cosβ)D.以上情况均有可能

查看答案和解析>>

同步练习册答案