精英家教网 > 高中数学 > 题目详情
12.在如图所示的程序框图中,若U=lg$\frac{1}{3}$•log3$\frac{1}{10}$,V=2${\;}^{lo{g}_{\frac{1}{2}}2}$,则输出的S=$\frac{1}{2}$,

分析 分析程序中各变量、各语句的作用,再根据流程图所示的顺序,可知:该程序的作用是计算分段函数S=$\left\{\begin{array}{l}{V}&{U>V}\\{U}&{U≤V}\end{array}\right.$的值,从而计算得解.

解答 解:分析程序中各变量、各语句的作用,
再根据流程图所示的顺序,可知:
该程序的作用是计算分段函数S=$\left\{\begin{array}{l}{V}&{U>V}\\{U}&{U≤V}\end{array}\right.$的值.
∵U=lg$\frac{1}{3}$•log3$\frac{1}{10}$=1,V=2${\;}^{lo{g}_{\frac{1}{2}}2}$=$\frac{1}{2}$,
∴U>V,
∴S=$\frac{1}{2}$.
故答案为:$\frac{1}{2}$.

点评 本题考查的知识点是程序框图,其中根据程序框图分析出程序框图的功能是解答本题的关键,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

2.把下列复数化为指数形式和极坐标形式.
(1)$\sqrt{2}+\sqrt{2}$i;
(2)-2+2i;
(3)1+i;
(4)-i.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.某市春节7家超市的广告费支出x(万元)和销售额y(万元)数据如下,
 超市 A B C D E F G
 广告费支出x 1 2 4 6 11 13 19
 销售额y 19 32 40 44 52 53 54
(1)请根据上表提供的数据.用最小二乘法求出y关于x的线性回归方程;$\widehat{y}$=$\widehat{b}$x+$\widehat{a}$
(2)用二次函数回归模型拟合y与x的关系,可得回归方程:$\widehat{y}$=-0.17x2+5x+20.
经计算二次函数回归模型和线性回归模型的R2分别约为0.93和0.75,请用R2说明选择哪个回归模型更合适.并用此模型预测A超市广告费支出为3万元时的销售额,
参考数据及公式:$\overline{x}$=8,$\overline{y}$=42.$\sum_{i=1}^{7}$xiyi=2794,$\sum_{i=1}^{7}$x${\;}_{i}^{2}$=708,
$\widehat{b}$=$\frac{\sum_{i=1}^{n}({x}_{i}-\overline{x})({y}_{i}-\overline{y})}{\sum_{i=1}^{n}({x}_{i}-\overline{x})^{2}}$=$\frac{\sum_{i=1}^{n}{x}_{i}{y}_{i}-n\overline{x}\overline{y}}{\sum_{i=1}^{n}{x}_{i}^{2}-n{\overline{x}}^{2}}$,$\widehat{a}$=$\overline{y}$-$\widehat{b}$x.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.若l1:x+(m+1)y+(m-2)=0,l2:mx+2y+8=0的图象是两条平行直线,则m的值是(  )
A.m=1或m=-2B.m=1C.m=-2D.m的值不存在

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.已知$\overrightarrow a=(1,x),\overrightarrow b=(x-1,2)$,若$\overrightarrow a$∥$\overrightarrow b$,则实数x的值为(  )
A.2B.-1C.1或-2D.-1或2

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.解答下面两个问题:
(Ⅰ)已知复数$z=-\frac{1}{2}+\frac{{\sqrt{3}}}{2}i$,其共轭复数为$\overline z$,求$|\frac{1}{z}|+{(\overline z)^2}$;
(Ⅱ)复数z1=2a+1+(1+a2)i,z2=1-a+(3-a)i,a∈R,若${z_1}+\overline{z_2}$是实数,求a的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.若直线y=kx+2与直线y=2x-1互相平行,则实数k=2.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.已知平面向量$\overrightarrow{a}$=(1,-1),$\overrightarrow{b}$=(6,-4),若$\overrightarrow{a}$⊥(t$\overrightarrow{a}$+$\overrightarrow{b}$),则实数t的值为(  )
A.10B.5C.-10D.-5

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.若${(x+\frac{1}{2x})^n}$二项展开式中的前三项的系数成等差数列,则常数项为$\frac{35}{8}$.(用数字作答)

查看答案和解析>>

同步练习册答案