| 超市 | A | B | C | D | E | F | G |
| 广告费支出x | 1 | 2 | 4 | 6 | 11 | 13 | 19 |
| 销售额y | 19 | 32 | 40 | 44 | 52 | 53 | 54 |
分析 (1)由题意求出回归系数$\widehat{b}$、$\widehat{a}$,写出线性回归方程;
(2)根据线性回归模型的相关指数判断用二次函数回归模型更合适,
计算x=3时$\widehat{y}$的值即可.
解答 解:(1)由题意,n=7,$\overline{x}$=8,$\overline{y}$=42,$\sum_{i=1}^{7}$xiyi=2794,$\sum_{i=1}^{7}$x${\;}_{i}^{2}$=708,
∴$\widehat{b}$=$\frac{\sum_{i=1}^{n}{x}_{i}{y}_{i}-n\overline{x}\overline{y}}{\sum_{i=1}^{n}{x}_{i}^{2}-n{\overline{x}}^{2}}$=$\frac{2794-7×8×42}{708-7{×8}^{2}}$=1.7,
$\widehat{a}$=$\overline{y}$-$\widehat{b}$$\overline{x}$=42-1.7×8=28.4,
∴y关于x的线性回归方程是$\widehat{y}$=1.7x+28.4;
(2)∵线性回归模型的R2:0.75<0.93,
∴用二次函数回归模型拟合更合适,
当x=3时,得$\widehat{y}$=-0.17×32+5×3+20=33.47,
预测A超市广告费支出为3万元时销售额为33.47万元.
点评 本题考查了线性回归方程的应用问题,是基础题.
科目:高中数学 来源: 题型:选择题
| A. | $\frac{1}{2}$ | B. | -2 | C. | 2 | D. | $-\frac{1}{2}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 5 | B. | 6 | C. | 8 | D. | 9 |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com