精英家教网 > 高中数学 > 题目详情
18.若用水量x与某种产品的产量y的回归直线方程是$\stackrel{∧}{y}$=2x+1250,若用水量为  50kg时,预计的某种产品的产量是(  )
A.1350 kgB.大于 1350 kgC.小于1350kgD.以上都不对

分析 直接利用用水量x与某种产品的产量y的回归方程是$\widehat{y}$=2x+1250,x=50kg代入即可求得结论.

解答 解:由题意,∵水量x与某种产品的产量y的回归方程是$\widehat{y}$=2x+1250,
∴当x=50kg时,$\widehat{y}$=2×50+1250=1350,
∴当用水量为50kg时,预计的某种产量是1350kg,
故选:A.

点评 本题的考点是回归分析的初步应用,考查利用回归方程进行预测,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

17.解答下面两个问题:
(Ⅰ)已知复数$z=-\frac{1}{2}+\frac{{\sqrt{3}}}{2}i$,其共轭复数为$\overline z$,求$|\frac{1}{z}|+{(\overline z)^2}$;
(Ⅱ)复数z1=2a+1+(1+a2)i,z2=1-a+(3-a)i,a∈R,若${z_1}+\overline{z_2}$是实数,求a的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知函数f(x)=|x+m|+|2x-1|(m∈R).
(1)当m=-1时,求不等式f(x)≤2的解集;
(2)设关于x的不等式f(x)≤|2x+1|的解集为A,且[1,2]⊆A,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.若直线(2a2-7a+3)x+(a2-9)y+3a2=0的倾斜角为45°,则实数a=-$\frac{2}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.若${(x+\frac{1}{2x})^n}$二项展开式中的前三项的系数成等差数列,则常数项为$\frac{35}{8}$.(用数字作答)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.如图,若N=10,则输出的数等于(  )
A.$\frac{10}{9}$B.$\frac{9}{10}$C.$\frac{10}{11}$D.$\frac{12}{11}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.为了打好脱贫攻坚战,某贫困县农科院针对玉米种植情况进行调研,力争有效地改良玉米品种,为农民提供技术支援.现对已选出的一组玉米的茎高进行统计,获得茎叶图如图(单位:厘米),设茎高大于或等于180厘米的玉米为高茎玉米,否则为矮茎玉米.
(1)完成2×2列联表,并判断是否可以在犯错误概率不超过1%的前提下,认为抗倒伏与玉米矮茎有关?
P(K2≥k)0.150.100.050.0250.0100.0050.001
k2.0722.7063.8415.0246.6357.87910.828
(K2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$,其中n=a+b+c+d)
(2)为了改良玉米品种,现采用分层抽样的方法从抗倒伏的玉米中抽出5株,再从这5株玉米中选取2株进行杂交试验,选取的植株均为矮茎的概率是多少?

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.点A(2,1)和点A关于点$(-\frac{1}{2},\frac{5}{2})$的对称点B都在直线3x-2y+a=0的同侧,则a的取值范围是(-∞,-4)∪(17,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.下列函数在(0,+∞)上是减函数的是(  )
A.f(x)=lnxB.f(x)=e-xC.$f(x)=\sqrt{x}$D.$f(x)=-\frac{1}{x}$

查看答案和解析>>

同步练习册答案