精英家教网 > 高中数学 > 题目详情
6.若直线(2a2-7a+3)x+(a2-9)y+3a2=0的倾斜角为45°,则实数a=-$\frac{2}{3}$.

分析 根据题意,由直线的倾斜角为45°,可得其斜率k=1,结合直线的方程可得(2a2-7a+3)+(a2-9)=0,解可得a的值,将a的值代入直线方程验证即可得答案.

解答 解:根据题意,直线(2a2-7a+3)x+(a2-9)y+3a2=0的倾斜角为45°,
则其斜率k=tan45°=1,
则有(2a2-7a+3)+(a2-9)=0,
即3a2-7a-6=0,
解可得:a=3或-$\frac{2}{3}$,
a=3时,直线方程不存在,舍去,
a=-$\frac{2}{3}$时,直线方程为5x-5y+12=0,符合题意;
故答案为:-$\frac{2}{3}$.

点评 本题考查直线的倾斜角与斜率的关系,关键是分析得到关于a的方程.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

5.设随机变量ξ~B(2,p),随机变量η~B(3,p),若$P(ξ≥1)=\frac{5}{9}$,则Eη=(  )
A.$\frac{1}{3}$B.$\frac{2}{3}$C.1D.$\frac{19}{27}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.已知复数1+2i,a+bi(a、b∈R,i是虚数单位)满足(1+2i)(a+bi)=5+5i,则|a+bi|=(  )
A.3$\sqrt{2}$B.$\sqrt{17}$C.$\sqrt{10}$D.$\sqrt{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.下列四个结论:
①若x>0,则x>sinx恒成立;   
②“若am2<bm2,则a<b”的逆命题为真命题
③?m∈R,使f(x)=(m-1)x${\;}^{{m}^{2}-4m+3}$是幂函数,且在(-∞,0)上单调递减
④对于命题p:?x∈R使得x2+x+1<0,则¬p:?x∈R,均有x2+x+1>0
其中正确结论的个数是(  )
A.1个B.2个C.3个D.4个

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知⊙C1:(x+1)2+y2=1,⊙C2:(x-1)2+y2=r2(r>0),⊙C1内切⊙C2于点A,P是两圆公切线l上异于A的一点,直线PQ切⊙C1于点Q,PR切⊙C2于点R,且Q,R均不与A重合,直线C1Q,C2R相交于点M.
(1)求M的轨迹C的方程;
(2)若直线MC1与x轴不垂直,它与C的另一个交点为N,M′是点M关于x轴的对称点,求证:直线NM′过定点.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.假设关于某种设备的使用年限x(年)与所支出的维修费用y(万元)有如下统计资料:
x23456
y2.23.85.56.57.0
参考数据:$\sum_{i=1}^{5}$x${\;}_{i}^{2}$=90,$\sum_{i=1}^{5}$xiyi=112.3.
(1)作出散点图
(2)求出回归直线方程,并估计使用年限为10年时,维修费用约是多少?

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.若用水量x与某种产品的产量y的回归直线方程是$\stackrel{∧}{y}$=2x+1250,若用水量为  50kg时,预计的某种产品的产量是(  )
A.1350 kgB.大于 1350 kgC.小于1350kgD.以上都不对

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知函数f(x)=$\overrightarrow{a}$$•\overrightarrow{b}$,其中$\overrightarrow{a}$=(2cosx,$\sqrt{3}$sin2x),$\overrightarrow{b}$=(cosx,1),x∈R
(1)求函数y=f(x)的最小正周期和单调递增区间:
(2)在△ABC中,角A,B,C所对的边分别为a,b,c,f(A)=2,a=$\sqrt{7}$且sinB=2sinC,求△ABC的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.已知2cos2x+sin2x=Asin(ωx+φ)+b(A>0,0<φ<π),则A,φ,b的值分别为(  )
A.$A=2,φ=\frac{π}{4},b=1$B.$A=\sqrt{2},φ=\frac{π}{6},b=2$C.$A=\sqrt{2},φ=\frac{π}{6},b=1$D.$A=\sqrt{2},φ=\frac{π}{4},b=1$

查看答案和解析>>

同步练习册答案