精英家教网 > 高中数学 > 题目详情
15.已知函数f(x)=$\overrightarrow{a}$$•\overrightarrow{b}$,其中$\overrightarrow{a}$=(2cosx,$\sqrt{3}$sin2x),$\overrightarrow{b}$=(cosx,1),x∈R
(1)求函数y=f(x)的最小正周期和单调递增区间:
(2)在△ABC中,角A,B,C所对的边分别为a,b,c,f(A)=2,a=$\sqrt{7}$且sinB=2sinC,求△ABC的面积.

分析 (1)求出f(x)=2sin(2x+$\frac{π}{6}$)+1,由此能求出函数y=f(x)的最小正周期和函数y=f(x)的单调增区间.
(2)由f(A)=2,求出A=$\frac{π}{3}$,由$a=\sqrt{7}$,利用余弦定理得b=2c.由此能求出△ABC的面积.

解答 解:(1)∵$\overrightarrow{a}$=(2cosx,$\sqrt{3}$sin2x),$\overrightarrow{b}$=(cosx,1),x∈R,
∴f(x)=$\overrightarrow{a}$$•\overrightarrow{b}$=$2co{s}^{2}x+\sqrt{3}sin2x$
=$\sqrt{3}sin2x+cos2x+1$=2sin(2x+$\frac{π}{6}$)+1,
∴函数y=f(x)的最小正周期为T=π,
单调递增区间满足-$\frac{π}{2}$+2kπ$≤2x+\frac{π}{6}≤$$\frac{π}{2}$+2kπ,k∈Z.
解得-$\frac{π}{3}$+kπ≤x≤$\frac{π}{6}$+kπ,k∈Z.
∴函数y=f(x)的单调增区间是[-$\frac{π}{3}$+kπ,$\frac{π}{6}+kπ$],k∈Z.
(2)∵f(A)=2,∴2sin(2A+$\frac{π}{6}$)+1=2,即sin(2A+$\frac{π}{6}$)=$\frac{1}{2}$,
又∵0<A<π,∴A=$\frac{π}{3}$,
∵$a=\sqrt{7}$,由余弦定理得a2=b2+c2-2bccosA=(b+c)2-3bc=7,①
∵sinB=2sinC,∴b=2c.②
由①②得c2=$\frac{7}{3}$,∴${S}_{△ABC}=\frac{7\sqrt{3}}{6}$.

点评 本题考查三角函数的最小正周期、单调递增区间的求法,考查三角形面积的求法,考查同角三角函数、三角函数的最小正周期、三角函数的增区间、作弦定理等基础知识,考查推理论证能力、运算求解能力,考查化归与转化思想、函数与方程思想,是中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

14.已知函数f(x)=x3-x2+1.
(I)求函数f(x)在点(1,f(1))处的切线方程;
(II)求函数f(x)的极值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.若直线(2a2-7a+3)x+(a2-9)y+3a2=0的倾斜角为45°,则实数a=-$\frac{2}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.如图,若N=10,则输出的数等于(  )
A.$\frac{10}{9}$B.$\frac{9}{10}$C.$\frac{10}{11}$D.$\frac{12}{11}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.为了打好脱贫攻坚战,某贫困县农科院针对玉米种植情况进行调研,力争有效地改良玉米品种,为农民提供技术支援.现对已选出的一组玉米的茎高进行统计,获得茎叶图如图(单位:厘米),设茎高大于或等于180厘米的玉米为高茎玉米,否则为矮茎玉米.
(1)完成2×2列联表,并判断是否可以在犯错误概率不超过1%的前提下,认为抗倒伏与玉米矮茎有关?
P(K2≥k)0.150.100.050.0250.0100.0050.001
k2.0722.7063.8415.0246.6357.87910.828
(K2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$,其中n=a+b+c+d)
(2)为了改良玉米品种,现采用分层抽样的方法从抗倒伏的玉米中抽出5株,再从这5株玉米中选取2株进行杂交试验,选取的植株均为矮茎的概率是多少?

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.根据如下样本数据
345678
y4.02.5-0.50.5-2.0-3.0
得到的回归方程为${\;}_{y}^{∧}$=${\;}_{b}^{∧}$x+${\;}_{a}^{∧}$,则(  )
A.${\;}_{a}^{∧}$>0,${\;}_{b}^{∧}$>0B.${\;}_{a}^{∧}$>0,${\;}_{b}^{∧}$<0C.${\;}_{a}^{∧}$<0,${\;}_{b}^{∧}$>0D.${\;}_{a}^{∧}$<0,${\;}_{b}^{∧}$<0

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.点A(2,1)和点A关于点$(-\frac{1}{2},\frac{5}{2})$的对称点B都在直线3x-2y+a=0的同侧,则a的取值范围是(-∞,-4)∪(17,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.如图,在侧棱长和底面边长均为2的正三棱柱ABC-A1B1C1中,点M、N、P分别在AA1、BC、BB1上运动,且AM=CN=B1P=X(0<X<2).记三棱锥P-MNB1的体积为,V(X)则函数Y=V(X)的图象大致为(  )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.如图,样本数为9的三组数据,它们的平均数都是5,频率条形图如下,则标准差最大的一组是图3.

查看答案和解析>>

同步练习册答案