精英家教网 > 高中数学 > 题目详情
8.下列函数在(0,+∞)上是减函数的是(  )
A.f(x)=lnxB.f(x)=e-xC.$f(x)=\sqrt{x}$D.$f(x)=-\frac{1}{x}$

分析 根据题意,依次分析选项中函数的单调性,综合即可得答案.

解答 解:根据题意,依次分析选项:
对于A,f(x)=lnx为对数函数,其底数为e>1,在(0,+∞)上是增函数,不符合题意;
对于B,f(x)=e-x=($\frac{1}{e}$)x,为指数函数,其底数为$\frac{1}{e}$,在(0,+∞)上是减函数,符合题意;
对于C,f(x)=$\sqrt{x}$=${x}^{\frac{1}{2}}$,为幂函数,在(0,+∞)上是增函数,不符合题意;
对于D,f(x)=-$\frac{1}{x}$=$\frac{-1}{x}$,为反比例函数,在(0,+∞)上是增函数,不符合题意;
故选:B.

点评 本题考查函数单调性的判定,注意掌握常见函数的单调性.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

18.若用水量x与某种产品的产量y的回归直线方程是$\stackrel{∧}{y}$=2x+1250,若用水量为  50kg时,预计的某种产品的产量是(  )
A.1350 kgB.大于 1350 kgC.小于1350kgD.以上都不对

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知$\overrightarrow a=(sinωx,2cosωx),\overrightarrow b=(\sqrt{3}cosωx-sinωx,cosωx)$,其中ω>0,若函数$f(x)=2\overrightarrow a•\overrightarrow b-1$,且它的最小正周期为2π.
(1)求ω的值,并求出函数y=f(x)的单调递增区间;
(2)当$x∈[{m,m+\frac{π}{2}}]$(其中m∈[0,π])时,记函数f(x)的最大值与最小值分别为f(x)max与f(x)min,设φ(m)=f(x)max-f(x)min,求函数φ(m)的解析式;
(3)在第(2)问的前提下,已知函数g(x)=ln(ex-1+t),$h(x)=x|{x-1}|+2\sqrt{3}$,若对于任意x1∈[0,π],x2∈(1,+∞),总存在x3∈(0,+∞),使得φ(x1)+g(x2)>h(x3)成立,求实数t的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.已知2cos2x+sin2x=Asin(ωx+φ)+b(A>0,0<φ<π),则A,φ,b的值分别为(  )
A.$A=2,φ=\frac{π}{4},b=1$B.$A=\sqrt{2},φ=\frac{π}{6},b=2$C.$A=\sqrt{2},φ=\frac{π}{6},b=1$D.$A=\sqrt{2},φ=\frac{π}{4},b=1$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.定义在R上的函数f(x)满足f(x-1)的对称轴为x=1,f(x+1)=$\frac{4}{f(x)}$(f(x)≠0),且在区间(1,2)上单调递减,已知α、β是钝角三角形中两锐角,则f(sinα)和f(cosβ)的大小关系是(  )
A.f(sinα)>f(cosβ)B.f(sinα)<f(cosβ)
C.f(sinα)=f(cosβ)D.以上情况均有可能

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.已知函数$f(x)=\frac{e^x}{x+2}$,则f′(0)=$\frac{1}{4}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.二次函数y=ax2+bx+c(x∈R)的部分对应值如表:
x-3-2-101234
y-6046640-6
则一元二次不等式ax2+bx+c>0的解集是(  )
A.{x|x<-2,或x>3}B.{x|x≤-2,或x≥3}C.{x|-2<x<3}D.{x|-2≤x≤3}

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.如图是某社区的部分规划设计图,住宅区一边的边界曲线记为C,步行街(宽度不计)所在直线L与曲线C相切于点M,以点E为圆心,1百米为半径的圆的四分之一为大型超市,为方便住宅区居民购物休闲,该社区计划在步行街与大型超市之间铺设一条连接道路AB(宽度不计)以及修建花园广场.
根据相关数据,某同学建立了平面直角坐标系xOy,曲线C用函数模型y=ex-1+kx+b(k,b为常数)拟合.并求得直线l:y=2x,M(1,2),E(2$\sqrt{5}$,0),单位:百米.点A在l上,点B在$\widehat{FG}$上
(1)求曲线C的方程和AB的最短距离;
(2)若过点A作AP垂直于x轴,垂足为P,在空地△APB内截取一个面积最大的矩形,用来修建一个花园广场.要求矩形的一边在AB上.在连接道路AB最短时,求花园广场的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知x>0,y>0,且xy-x-y=3.
(1)求xy的最小值;
(2)求x+y的最小值.

查看答案和解析>>

同步练习册答案