精英家教网 > 高中数学 > 题目详情
4.已知x>0,y>0,且xy-x-y=3.
(1)求xy的最小值;
(2)求x+y的最小值.

分析 (1)由x>0,y>0,可得xy=3+x+y≥$3+2\sqrt{xy}$,解得xy的最小值.
(2)3+x+y=$xy≤{({\frac{x+y}{2}})^2}$,解得x+y的最小值.

解答 解:(1)∵x>0,y>0,
∴xy=3+x+y≥$3+2\sqrt{xy}$,解得xy≥9(负舍),当且仅当x=y=3时取等号.
故(xy)min=9.
(2)3+x+y=$xy≤{({\frac{x+y}{2}})^2}$,解得x+y≥6(负舍),当且仅当x=y=3时取等号.
故(x+y)min=6.

点评 本题考查了基本不等式的性质,考查了推理能力与计算能力,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

8.下列函数在(0,+∞)上是减函数的是(  )
A.f(x)=lnxB.f(x)=e-xC.$f(x)=\sqrt{x}$D.$f(x)=-\frac{1}{x}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.在正方体ABCD-A1B1C1D1内随机取点,则该点落在三棱锥A1-ABC内的概率是(  )
A.$\frac{1}{3}$B.$\frac{1}{6}$C.$\frac{1}{2}$D.$\frac{1}{4}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.如图都是边长为1的正方体叠成的几何体,例如第(1)个几何体的表面积为6个平方单位,第(2)个几何体的表面积为18个平方单位,第(3)个几何体的表面积是36个平方单位.依此规律,则第n个几何体的表面积是3n(n+1)个平方单位.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.若a>0,b>0,且$\sqrt{a}+\sqrt{b}=1$,则$\frac{1}{a}+\frac{1}{b}$的最小值为,8.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.已知函数A=$\{x|\frac{1}{4}<{2^x}<16,x∈Z\}$,B={x|x2-3x<0,x∈Z},从集合A中任取一个元素,则这个元素也是集合B中元素的概率为(  )
A.$\frac{1}{5}$B.$\frac{1}{3}$C.$\frac{2}{5}$D.$\frac{2}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.运行如图所示的程序,输出的结果为(  )
A.12B.10C.9D.8

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.若3sinα-4cosα=5,则tan(α+$\frac{π}{4}$)=(  )
A.-$\frac{1}{7}$B.$\frac{1}{7}$C.-7D.7

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.若$cos(π-α)=\frac{4}{5}$,α是第三象限的角,则$sin(α+\frac{π}{4})$等于(  )
A.$-\frac{{7\sqrt{2}}}{10}$B.$\frac{{7\sqrt{2}}}{10}$C.$-\frac{{\sqrt{2}}}{10}$D.$\frac{{\sqrt{2}}}{10}$

查看答案和解析>>

同步练习册答案