11£®½üÄêÀ´ÎÒ¹úµç×ÓÉÌÎñÐÐÒµÓ­À´Åñ²ª·¢Õ¹µÄлúÓö£¬2016ÄêË«11ÆÚ¼ä£¬Ä³¹ºÎïÆ½Ì¨µÄÏúÊÛÒµ¼¨¸ß´ïһǧ¶àÒÚÈËÃñ±Ò£®Óë´Ëͬʱ£¬Ïà¹Ø¹ÜÀí²¿ÃÅÍÆ³öÁËÕë¶ÔµçÉ̵ÄÉÌÆ·ºÍ·þÎñµÄÆÀ¼ÛÌåϵ£®ÏÖ´ÓÆÀ¼ÛϵͳÖÐÑ¡³ö200´Î³É¹¦½»Ò×£¬²¢¶ÔÆäÆÀ¼Û½øÐÐͳ¼Æ£¬¶ÔÉÌÆ·µÄºÃÆÀÂÊΪ0.6£¬¶Ô·þÎñµÄºÃÆÀÂÊΪ0.75£¬ÆäÖжÔÉÌÆ·ºÍ·þÎñ¶¼×ö³öºÃÆÀµÄ½»Ò×Ϊ80´Î£®
£¨¢ñ£©ÇëÍê³ÉÈçÏÂÁÐÁª±í£»
¶Ô·þÎñºÃÆÀ¶Ô·þÎñ²»ÂúÒâºÏ¼Æ
¶Ô ÉÌÆ· ºÃÆÀ
¶ÔÉÌÆ·²»ÂúÒâ
ºÏ    ¼Æ
£¨¢ò£©ÊÇ·ñ¿ÉÒÔÔÚ·¸´íÎóµÄ¸ÅÂʲ»³¬¹ý0.1%µÄǰÌáÏ£¬ÈÏΪÉÌÆ·ºÃÆÀÓë·þÎñºÃÆÀÓйأ¿
£¨¢ó£©ÈôÕë¶ÔÉÌÆ·µÄºÃÆÀÂÊ£¬²ÉÓ÷ֲã³éÑùµÄ·½Ê½´ÓÕâ200´Î½»Ò×ÖÐÈ¡³ö5´Î½»Ò×£¬²¢´ÓÖÐÑ¡ÔñÁ½´Î½»Ò×½øÐпͻ§»Ø·Ã£¬ÇóÖ»ÓÐÒ»´ÎºÃÆÀµÄ¸ÅÂÊ£®
P£¨K2¡Ýk£©0.150.100.050.0250.0100.0050.001
k2.0722.7063.8415.0246.6357.87910.828
${K^2}=\frac{{n{{£¨ad-bc£©}^2}}}{£¨a+b£©£¨c+d£©£¨a+c£©£¨b+d£©}$£¬ÆäÖÐn=a+b+c+d£©

·ÖÎö £¨¢ñ£©ÓÉÌâÒâÌîд2¡Á2ÁÐÁª±í¼´¿É£»
£¨¢ò£©¸ù¾Ý±íÖÐÊý¾Ý¼ÆËã¹Û²âÖµ£¬¶ÔÕÕÁÙ½çÖµ¼´¿ÉµÃ³ö½áÂÛ£»
£¨¢ó£©ÓÃÁоٷ¨Çó³ö»ù±¾Ê¼þÊý£¬¼ÆËã¶ÔÓ¦µÄ¸ÅÂÊÖµ£®

½â´ð ½â£º£¨¢ñ£©ÓÉÌâÒâ¿ÉµÃ¹ØÓÚÉÌÆ·ºÍ·þÎñÆÀ¼ÛµÄ2¡Á2ÁÐÁª±í£º

¶Ô·þÎñºÃÆÀ¶Ô·þÎñ²»ÂúÒâºÏ¼Æ
¶ÔÉÌÆ·ºÃÆÀ8040120
¶ÔÉÌÆ·²»ÂúÒâ701080
ºÏ¼Æ15050200
¡­£¨4·Ö£©
£¨¢ò£©¸ù¾Ý±íÖÐÊý¾Ý£¬¼ÆËã${K^2}=\frac{{200¡Á{{£¨80¡Á10-40¡Á70£©}^2}}}{150¡Á50¡Á120¡Á80}¡Ö11.111£¾10.828$£¬
¹Ê¿ÉÒÔÈÏΪÔÚ·¸´íÎóµÄ¸ÅÂʲ»³¬¹ý0.1%µÄǰÌáÏ£¬ÉÌÆ·ºÃÆÀÓë·þÎñºÃÆÀÓйأ»¡­£¨8·Ö£©
£¨¢ó£©ÈôÕë¶ÔÉÌÆ·µÄºÃÆÀÂÊ£¬²ÉÓ÷ֲã³éÑùµÄ·½Ê½´ÓÕâ200´Î½»Ò×ÖÐÈ¡³ö5´Î½»Ò×£¬
ÔòºÃÆÀµÄ½»Ò×´ÎÊýΪ3´Î£¬²»ÂúÒâµÄ´ÎÊýΪ2´Î£¬ÁîºÃÆÀµÄ½»Ò×ΪA£¬B£¬C£¬²»ÂúÒâµÄ½»Ò×Ϊa£¬b£¬
´Ó5´Î½»Ò×ÖУ¬È¡³ö2´ÎµÄËùÓÐÈ¡·¨Îª
£¨A£¬B£©£¬£¨A£¬C£©£¬£¨A£¬a£©£¬£¨A£¬b£©£¬£¨B£¬C£©£¬£¨B£¬a£©£¬£¨B£¬b£©£¬
£¨C£¬a£©£¬£¨C£¬b£©£¬£¨a£¬b£©£¬¹²¼Æ10ÖÖÇé¿ö£¬
ÆäÖÐÖ»ÓÐÒ»´ÎºÃÆÀµÄÇé¿öÊÇ
£¨A£¬a£©£¬£¨A£¬b£©£¬£¨B£¬a£©£¬£¨B£¬b£©£¬£¨C£¬a£©£¬£¨C£¬b£©£¬¹²¼Æ6ÖÖ£¬
Òò´Ë£¬Ö»ÓÐÒ»´ÎºÃÆÀµÄ¸ÅÂÊΪP=$\frac{6}{10}=\frac{3}{5}$£®¡­£¨12·Ö£©

µãÆÀ ±¾Ì⿼²éÁ˶ÀÁ¢ÐÔ¼ìÑéºÍÁоٷ¨Çó¹Åµä¸ÅÐ͵ĸÅÂÊÎÊÌ⣬ÊÇÖеµÌ⣮

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

1£®ÒÑÖª¡ÑC1£º£¨x+1£©2+y2=1£¬¡ÑC2£º£¨x-1£©2+y2=r2£¨r£¾0£©£¬¡ÑC1ÄÚÇСÑC2ÓÚµãA£¬PÊÇÁ½Ô²¹«ÇÐÏßlÉÏÒìÓÚAµÄÒ»µã£¬Ö±ÏßPQÇСÑC1ÓÚµãQ£¬PRÇСÑC2ÓÚµãR£¬ÇÒQ£¬R¾ù²»ÓëAÖØºÏ£¬Ö±ÏßC1Q£¬C2RÏཻÓÚµãM£®
£¨1£©ÇóMµÄ¹ì¼£CµÄ·½³Ì£»
£¨2£©ÈôÖ±ÏßMC1ÓëxÖá²»´¹Ö±£¬ËüÓëCµÄÁíÒ»¸ö½»µãΪN£¬M¡äÊǵãM¹ØÓÚxÖáµÄ¶Ô³Æµã£¬ÇóÖ¤£ºÖ±ÏßNM¡ä¹ý¶¨µã£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

2£®Í¨¹ýÊг¡µ÷²é£¬µÃµ½Ä³²úÆ·µÄ×ʽðͶÈëx£¨ÍòÔª£©Óë»ñµÃµÄÀûÈóy£¨ÍòÔª£©µÄÊý¾Ý£¬Èç±íËùʾ£º
×ʽðͶÈëx23456
ÀûÈóy23569
£¨¢ñ£©¸ù¾ÝÉϱíÌṩµÄÊý¾Ý£¬ÓÃ×îС¶þ³Ë·¨ÇóÏßÐԻعéÖ±Ïß·½³Ì${\;}_{y}^{¡Ä}$=bx+a£»
£¨¢ò£©ÏÖͶÈë×ʽð10£¨ÍòÔª£©£¬Çó¹À¼Æ»ñµÃµÄÀûÈóΪ¶àÉÙÍòÔª£®
²Î¿¼¹«Ê½£º»Ø¹éÖ±Ïߵķ½³ÌÊÇ£º${\;}_{y}^{¡Ä}$=${\;}_{b}^{¡Ä}$x+${\;}_{a}^{¡Ä}$£¬ÆäÖÐb=$\frac{{{\sum_{i=1}^{n}x}_{i}y}_{i}-{{n}_{x}^{-}}_{y}^{-}}{{{\sum_{i=1}^{n}x}_{i}^{2}-{n}_{x}^{-}}^{2}}$£¬${\;}_{a}^{¡Ä}$=${\;}_{y}^{-}$-${\;}_{b}^{¡Ä}$${\;}_{x}^{-}$£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

19£®ÒÑÖª$\overrightarrow a=£¨sin¦Øx£¬2cos¦Øx£©£¬\overrightarrow b=£¨\sqrt{3}cos¦Øx-sin¦Øx£¬cos¦Øx£©$£¬ÆäÖЦأ¾0£¬Èôº¯Êý$f£¨x£©=2\overrightarrow a•\overrightarrow b-1$£¬ÇÒËüµÄ×îСÕýÖÜÆÚΪ2¦Ð£®
£¨1£©Ç󦨵ÄÖµ£¬²¢Çó³öº¯Êýy=f£¨x£©µÄµ¥µ÷µÝÔöÇø¼ä£»
£¨2£©µ±$x¡Ê[{m£¬m+\frac{¦Ð}{2}}]$£¨ÆäÖÐm¡Ê[0£¬¦Ð]£©Ê±£¬¼Çº¯Êýf£¨x£©µÄ×î´óÖµÓë×îСֵ·Ö±ðΪf£¨x£©maxÓëf£¨x£©min£¬Éè¦Õ£¨m£©=f£¨x£©max-f£¨x£©min£¬Çóº¯Êý¦Õ£¨m£©µÄ½âÎöʽ£»
£¨3£©ÔÚµÚ£¨2£©ÎʵÄǰÌáÏ£¬ÒÑÖªº¯Êýg£¨x£©=ln£¨ex-1+t£©£¬$h£¨x£©=x|{x-1}|+2\sqrt{3}$£¬Èô¶ÔÓÚÈÎÒâx1¡Ê[0£¬¦Ð]£¬x2¡Ê£¨1£¬+¡Þ£©£¬×Ü´æÔÚx3¡Ê£¨0£¬+¡Þ£©£¬Ê¹µÃ¦Õ£¨x1£©+g£¨x2£©£¾h£¨x3£©³ÉÁ¢£¬ÇóʵÊýtµÄȡֵ·¶Î§£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

6£®ÒÑÖª$\overrightarrow a=£¨-3£¬2£¬5£©$£¬$\overrightarrow b=£¨1£¬x£¬-1£©$£¬ÇÒ$\overrightarrow a•\overrightarrow b=4$£¬ÔòxµÄÖµÊÇ£¨¡¡¡¡£©
A£®6B£®5C£®4D£®3

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

16£®ÒÑÖª2cos2x+sin2x=Asin£¨¦Øx+¦Õ£©+b£¨A£¾0£¬0£¼¦Õ£¼¦Ð£©£¬ÔòA£¬¦Õ£¬bµÄÖµ·Ö±ðΪ£¨¡¡¡¡£©
A£®$A=2£¬¦Õ=\frac{¦Ð}{4}£¬b=1$B£®$A=\sqrt{2}£¬¦Õ=\frac{¦Ð}{6}£¬b=2$C£®$A=\sqrt{2}£¬¦Õ=\frac{¦Ð}{6}£¬b=1$D£®$A=\sqrt{2}£¬¦Õ=\frac{¦Ð}{4}£¬b=1$

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

3£®¶¨ÒåÔÚRÉϵĺ¯Êýf£¨x£©Âú×ãf£¨x-1£©µÄ¶Ô³ÆÖáΪx=1£¬f£¨x+1£©=$\frac{4}{f£¨x£©}$£¨f£¨x£©¡Ù0£©£¬ÇÒÔÚÇø¼ä£¨1£¬2£©Éϵ¥µ÷µÝ¼õ£¬ÒÑÖª¦Á¡¢¦ÂÊǶ۽ÇÈý½ÇÐÎÖÐÁ½Èñ½Ç£¬Ôòf£¨sin¦Á£©ºÍf£¨cos¦Â£©µÄ´óС¹ØÏµÊÇ£¨¡¡¡¡£©
A£®f£¨sin¦Á£©£¾f£¨cos¦Â£©B£®f£¨sin¦Á£©£¼f£¨cos¦Â£©
C£®f£¨sin¦Á£©=f£¨cos¦Â£©D£®ÒÔÉÏÇé¿ö¾ùÓпÉÄÜ

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

20£®¶þ´Îº¯Êýy=ax2+bx+c£¨x¡ÊR£©µÄ²¿·Ö¶ÔÓ¦ÖµÈç±í£º
x-3-2-101234
y-6046640-6
ÔòÒ»Ôª¶þ´Î²»µÈʽax2+bx+c£¾0µÄ½â¼¯ÊÇ£¨¡¡¡¡£©
A£®{x|x£¼-2£¬»òx£¾3}B£®{x|x¡Ü-2£¬»òx¡Ý3}C£®{x|-2£¼x£¼3}D£®{x|-2¡Üx¡Ü3}

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

7£®ÔÚÆ½ÃæÖ±½Ç×ø±êϵxOyÖУ¬FÊÇÅ×ÎïÏßC£ºy2=2px£¨p£¾0£©µÄ½¹µã£¬MÊÇÅ×ÎïÏßCÉϵÄÈÎÒâÒ»µã£¬µ±MλÓÚµÚÒ»ÏóÏÞÄÚʱ£¬¡÷OFMÍâ½ÓÔ²µÄÔ²Ðĵ½Å×ÎïÏßC×¼ÏߵľàÀëΪ$\frac{3}{2}$£®
£¨1£©ÇóÅ×ÎïÏßCµÄ·½³Ì£»
£¨2£©¹ýK£¨-1£¬0£©µÄÖ±Ïßl½»Å×ÎïÏßCÓÚA£¬BÁ½µã£¬ÇÒ$\overrightarrow{KA}=¦Ë\overrightarrow{KB}£¨¦Ë¡Ê[2£¬3]£©$£¬µãGΪxÖáÉÏÒ»µã£¬ÇÒ|GA|=|GB|£¬ÇóµãGµÄºá×ø±êx0µÄȡֵ·¶Î§£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸