精英家教网 > 高中数学 > 题目详情
设数列{an}的前n项和为Sn,已知a1=1,Sn=nan-n(n-1)(n=1,2,3…).数列{bn}满足bn=
1
anan+1
,Tn为数列bn的前n项和.
(1)求an和Tn
(2)若对于任意的n∈N+,不等式λTn<n+8(-1)n恒成立,求实数λ的取值范围.
考点:数列与不等式的综合
专题:计算题,等差数列与等比数列,不等式的解法及应用
分析:(1)当n≥2时,an=Sn-Sn-1=nan-(n-1)an-1-2(n-1),易证an-an-1=2(n≥2,n∈N*),于是可得:{an}是等差数列,再由等差数列的通项公式,即可得到通项,再由裂项相消求和,求得Tn
(2)分别讨论n为奇数和偶数,运用分离参数,讨论右边的最小值,注意运用单调性和基本不等式,即可得到范围.
解答: 解:(1)当n≥2,n∈N*时,由已知Sn=nan-n(n-1)
得Sn-1=(n-1)an-1-(n-1)(n-2).
两式相减得Sn-Sn-1=nan-(n-1)an-1-2(n-1).
又Sn-Sn-1=an,所以(n-1)an-(n-1)an-1=2(n-1).
即an-an-1=2(n≥2,n∈N*).
所以{an}是以1为首项、2为公差的等差数列,
即an=1+2(n-1)=2n-1,
bn=
1
anan+1
=
1
(2n-1)(2n+1)
=
1
2
1
2n-1
-
1
2n+1
).
则Tn=b1+b2+…+bn=
1
2
[(1-
1
3
)+(
1
3
-
1
5
)+…+(
1
2n-1
-
1
2n+1
)]
=
1
2
(1-
1
2n+1
).
则Tn=
n
2n+1

(2)由于对任意的n∈N+,不等式λTn<n+8(-1)n恒成立,
则当n为奇数时,有λTn<n-8恒成立,
即有λ<
(n-8)(2n+1)
n
=2n-
8
n
-15,
由于2n-
8
n
-15在n≥1上递增,则n=1取得最小值,且为-21,
则λ<-21;
当n为偶数时,有λTn<n+8恒成立,
即有λ<
(n+8)(2n+1)
n
=2n+
8
n
+17,
由于2n+
8
n
+17≥2
2n•
8
n
+17=25,当且仅当n=2,取得最小值,且为25.
则λ<25.
由于对任意的n∈N+,不等式恒成立,则λ<-21.
则实数λ的取值范围是(-∞,-21).
点评:本题考查数列的通项和求和,着重考查运算、推理的能力,突出考查等差关系的确定与裂项法求和的综合应用,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知集合A={x|x>2},B={x|1<x<3},则(∁RA)∩B=(  )
A、{x|x>2}
B、{x|x>1}
C、{x|2<x<3}
D、{x|1<x≤2}

查看答案和解析>>

科目:高中数学 来源: 题型:

△ABC内角A、B、C成等差,
①若a、b、c成等比,则△ABC等边三角形;
②若a=2c,则△ABC锐角三角形;
③若
AB
2
=
AB
AC
+
BA
BC
+
CA
CB
,则3A=C;
④若tanA+tanC>-
3
,则△ABC为钝角三角形.
其中正确命题的个数是(  )
A、1B、2C、3D、4

查看答案和解析>>

科目:高中数学 来源: 题型:

已知
k
0
是矩阵A=
10
m2
的一个特征向量.
(Ⅰ)求m的值和向量
k
0
对应的特征值;
(Ⅱ)若B=
32
21
,求矩阵B-1A.

查看答案和解析>>

科目:高中数学 来源: 题型:

直线y=kx-2交抛物线y2=8x于A、B两点,若弦AB的中点M(2,m),则k=(  )
A、2或-1B、-1C、2D、3

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在四棱锥P-ABCD中,底面ABCD是∠DAB=60°且边长为a的菱形,侧面PAD是等边三角形,且平面PAD⊥底面ABCD,G为AD的中点.
(1)求证:BG⊥平面PAD;
(2)求 点G到平面PAB的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:

商场销售某一品牌的羊毛衫,购买人数n是羊毛衫标价x的一次函数,标价越高,购买人数越少.已知标价为每件300元时,购买人数为零.标价为每件225元时,购买人数为75人,若这种羊毛衫的成本价是100元/件,商场以高于成本价的相同价格(标价)出售,问:
(1)商场要获取最大利润,羊毛衫的标价应定为每件多少元?
(2)通常情况下,获取最大利润只是一种“理想结果”,如果商场要获得最大利润的75%,那么羊毛衫的标价为每件多少元?

查看答案和解析>>

科目:高中数学 来源: 题型:

设F1,F2分别为双曲线
x2
a2
-
y2
b2
=1(a>0,b>0)的左、右焦点,若在右支上存在点A,使得点F2到直线AF1的距离为2a,则该双曲线的离心率的取值范围是(  )
A、(1,
2
)
B、(
2
,+∞
C、(1,2)
D、(2,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:

在△ABC中,已知角A=60°,边b=1,三角形的面积为
3
,则边c=(  )
A、5
B、
14
C、4
D、3

查看答案和解析>>

同步练习册答案