精英家教网 > 高中数学 > 题目详情
如图,在四棱锥P-ABCD中,底面ABCD是∠DAB=60°且边长为a的菱形,侧面PAD是等边三角形,且平面PAD⊥底面ABCD,G为AD的中点.
(1)求证:BG⊥平面PAD;
(2)求 点G到平面PAB的距离.
考点:点、线、面间的距离计算,直线与平面垂直的判定
专题:空间位置关系与距离
分析:(1)运用直线平面的垂直的性质,判定定理证明,
(2)运用等积法得出vG-PAB=VA-PGB=
1
3
×
15
8
a2×h=
1
3
×
3
8
a2×
3
2
a,即可求h的值.
解答: (1)证明:连接PG,∴PG⊥AD,∵平面PAG⊥平面ABCD
∴PG⊥平面ABCD,∴P⊥GB,
又GB⊥AD是∴GB⊥平面PAD,
(2)解;设点G到平面PAB的距离为h,△PAB中,PA=AB=a
∴面积S=
15
8
a2
∵vG-PAB=VA-PGB=
1
3
×
15
8
a2×h=
1
3
×
3
8
a2×
3
2
a,
∴h=
15
10
a.
点评:本题考查了空间直线平面的垂直问题,距离问题,运用运用等积法得出空间距离,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

函数f(x)=
2
1-
x
的定义域是(  )
A、[0,1)
B、[0,+∞)
C、[1,+∞)
D、[0,1)∪(1,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:

评委会把同学们上交的作品的件数按5天一组分组统计,绘制了频率分布直方图,如图所示,已知从左到右各长方形的高的比为2:3:4:6:4:1,第三组的频数为 12,请解答下列问题:
(1)本次活动共有多少件作品参加评比?
(2)那组上交的作品量最多?有多少件?
(3)经过评比,第四组和第六组分别有10件、2件作品获奖,问这两组哪组的获奖率高?

查看答案和解析>>

科目:高中数学 来源: 题型:

直三棱柱ABC-EFG所有顶点在半径为
2
的球面上,AB=AC=
3
,AE=2,B-AE-C余弦为(  )
A、-
1
3
B、-
1
2
C、
1
3
D、
1
2

查看答案和解析>>

科目:高中数学 来源: 题型:

设数列{an}的前n项和为Sn,已知a1=1,Sn=nan-n(n-1)(n=1,2,3…).数列{bn}满足bn=
1
anan+1
,Tn为数列bn的前n项和.
(1)求an和Tn
(2)若对于任意的n∈N+,不等式λTn<n+8(-1)n恒成立,求实数λ的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

下列推理正确的是(  )
A、把a(b+c)与loga(x+y)类比,则有loga(x+y)=logax+logay
B、把a(b+c)与sin(x+y)类比,则有sin(x+y)=sinx+siny
C、把a(b+c)与ax+y类比,则有ax+y=ax+ay
D、把a(b+c)与a*(b+c)类比,则有a*(b+c)=a*b+a*

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(n)=
n2,n为奇数
-n2,n为偶数
,且an=f(n)+f(n+1),则a1+a2+a3+…+a2014=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,边长为2的正方体ABCD-A1B1C1D1中,E、F分别是棱A1D1,B1C1的中点.
(Ⅰ)求异面直线AE与FC所成角的余弦值;
(Ⅱ)求直线AC1与平面B1BCC1所成角的正切值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知直线l过点(2,1)且与圆O:x2+y2=4相交于A,B两点,∠AOB=120°.求直线AB的方程.

查看答案和解析>>

同步练习册答案