精英家教网 > 高中数学 > 题目详情

【题目】在△ABC中,AD、BE、CF分别为边BC、CA、AB上的高,作以AD为直径的圆T分别与AC、AB交于点M、N,过点M、N作圆T的切线,交于点P,O为△ABC的外心,延长AO,与BC交于点Q,AD与EF交于点R.证明:PD∥QR

【答案】见解析

【解析】

设AQ与EF的交点为H,PN、PM与BC分别交于点T、S,联结DE、DF、DH.

注意到,

∠DEF=∠BEF+∠BED

=180°-2∠ABC=∠BTN=∠PTS.

类似地,∠DFE=∠PST

所以,△PTS∽△DEF

且在Rt△DMC、Rt△BND中,分别有

.

从而,.

故∠DHE=∠PDT.

由P、Q、H、R四点共圆得

∠RHD=∠RQD.

因此,∠RQD=∠PDT.

于是,PD∥QR.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】O为坐标原点,动点M在椭圆C上,该椭圆的左顶点A到直线的距离为

求椭圆C的标准方程;

若线段MN平行于y轴,满足,动点P在直线上,满足证明:过点N且垂直于OP的直线过椭圆C的右焦点F

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某鲜花店根据以往某品种鲜花的销售记录,绘制出日销售量的频率分布直方图,如图所示.将日销售量落入各组区间的频率视为概率,且假设每天的销售量相互独立.

(1)求在未来的连续4天中,有2天的日销售量低于100枝且另外2天不低于150枝的概率;

(2)用表示在未来4天里日销售量不低于100枝的天数,求随机变量的分布列和数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知ab表示两条直线,表示三个不重合的平面,给出下列命题:

①若,则

②若ab相交且都在外,,则

③若,则

④若,且,则

⑤若,则.

其中正确命题的序号是_____________.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的离心率,短轴的一个端点到焦点的距离为.

(1)求椭圆的方程;

(2)斜率为的直线与椭圆交于两点,线段的中点在直线上,求直线轴交点纵坐标的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,多面体中,是正方形,,且分别为棱的中点.

(1)求证:平面

(2)求平面和平面所成锐二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】《山东省高考改革试点方案》规定:从2017年秋季高中入学的新生开始,不分文理科;2020年开始,高考总成绩由语数外3门统考科目和物理、化学等六门选考科目构成.将每门选考科目的考生原始成绩从高到低划分为A、B+、B、C+、C、D+、D、E共8个等级.参照正态分布原则,确定各等级人数所占比例分别为3%、7%、16%、24%、24%、16%、7%、3%.选考科目成绩计入考生总成绩时,将A至E等级内的考生原始成绩,依照等比例转换法则,分别转换到[91,100]、[81,90]、[71,80]、[61,70]、[51,60]、[41,50]、[31,40]、[21,30]八个分数区间,得到考生的等级成绩.

某校高一年级共2000人,为给高一学生合理选科提供依据,对六个选考科目进行测试,其中物理考试原始成绩基本服从正态分布N(60,169).

(Ⅰ)求物理原始成绩在区间(47,86)的人数;

(Ⅱ)按高考改革方案,若从全省考生中随机抽取3人,记X表示这3人中等级成绩在区间[61,80]的人数,求X的分布列和数学期望.

(附:若随机变量,则

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知点A,B的坐标分别为(-2,0),(2,0).三角形ABM的两条边AM,BM所在直线的斜率之积是-

(Ⅰ)求点M的轨迹方程;

(Ⅱ)设直线AM方程为,直线l方程为x=2,直线AM交l于P,点P,Q关于x轴对称,直线MQ与x轴相交于点D.若△APD面积为2,求m的值.

查看答案和解析>>

同步练习册答案