精英家教网 > 高中数学 > 题目详情
2.P为椭圆$\frac{{x}^{2}}{16}$+$\frac{{y}^{2}}{12}$=1上一点,F1、F2分别为左、右焦点,若|PF1|,|F1F2|,|PF2|成等比数列,则△PF1F2的面积为(  )
A.2$\sqrt{3}$B.4$\sqrt{3}$C.4D.8

分析 通过设|PF1|=t,由椭圆定义可知|PF2|=8-t、|F1F2|=2c=4,利用|PF1|、|F1F2|、|PF2|成等比数列计算可知△PF1F2为等边三角形,进而计算可得结论.

解答 解:由椭圆定义可知|PF1|+|PF2|=2a=8,|F1F2|=2c=4,
设|PF1|=t,则|PF2|=8-t,
∵|PF1|、|F1F2|、|PF2|成等比数列,
∴$|{F}_{1}{F}_{2}{|}^{2}$=|PF1|•|PF2|,
∴16=t(8-t),
解得:t=4,
∴|PF1|=|PF2|=4,
∴△PF1F2为等边三角形,
∴${S}_{△P{F}_{1}{F}_{2}}$=$\frac{1}{2}•4•4•\frac{\sqrt{3}}{2}$=4$\sqrt{3}$,
故选:B.

点评 本题考查椭圆的简单性质,注意解题方法的积累,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

12.化简:$\frac{sin(θ-π)si{n}^{2}(θ+\frac{π}{2})tan(θ+3π)}{cos(2π-θ)cos(-\frac{3π}{2}+θ)sin(π+θ)}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.以下关于命题的说法正确的有②③(填写所有正确命题的序号).
①“若log2a>0,则函数f(x)=logax(a>0,a≠1)在其定义域内是减函数”是真命题;
②命题“若a=0,则ab=0”的否命题是“若a≠0,则ab≠0”;
③命题“若a∈M,则b∉M”与命题“若b∈M,则a∉M”等价.
④命题“若x,y都是偶数,则x+y也是偶数”的逆命题为真命题.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.已知a为如图所示的算法框图中输出的结果,则a的值为(  )
A.2B.-1C.$\frac{1}{2}$D.-2

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.执行如图所示的程序框图,则输出的T值为(  )
A.30B.54C.55D.91

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知抛物线y2=2px(p>0)的准线恰好经过双曲线x2-$\frac{{y}^{2}}{3}$=1的左焦点F,直线y=x-8与此抛物线交于A、B两点,O为坐标原点.
(1)求此抛物线的方程;
(2)求证:OA⊥OB.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.过点A(1,2)且垂直于直线2x+y-5=0的直线方程为x-2y+3=0.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知函数$f(x)=|{1-\frac{1}{x}}|$,其中x>0.
(1)当0<a<b且f(a)=f(b),求ab的取值范围;
(2)是否存在实数a、b(a<b),使得函数y=f(x)的定义域和值域都是[a,b],若存在,求出a、b的值,若不存在,说明理由;
(3)若存在a、b(a<b),使得y=f(x)的定义域为[a,b],值域为[ma,mb](m≠0),求m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.在函数y=|tanx|,y=|sin(x+$\frac{π}{2}$)|,y=|sin2x|,y=sin(2x+$\frac{3π}{2}$)四个函数中,既是以π为周期的偶函数,又是区间(-$\frac{π}{2}$,0)上的增函数的个数是(  )
A.1B.2C.3D.4

查看答案和解析>>

同步练习册答案