精英家教网 > 高中数学 > 题目详情
在平面直角坐标系xOy中,点P到两点(0,-
3
)
(0,
3
)
的距离之和等于4,设点P的轨迹为C.
(Ⅰ)写出C的方程;
(Ⅱ)设直线y=kx+1与C交于A,B两点.k为何值时
OA
OB
?此时|
AB
|
的值是多少?.
分析:(Ⅰ)设P(x,y),由椭圆定义可知,点P的轨迹C是椭圆.从而写出其方程即可;
(Ⅱ)设A(x1,y1),B(x2,y2),其坐标满足
x2+
y2
4
=1
y=kx+1.
,将直线的方程代入椭圆的方程,消去y得到关于x的一元二次方程,再结合根与系数的关系及向量垂直的条件,求出k值即可,最后通牒利用弦长公式即可求得此时|
AB
|
的值,从而解决问题.
解答:解:
(Ⅰ)设P(x,y),由椭圆定义可知,点P的轨迹C是以(0,-
3
),(0,
3
)
为焦点,
长半轴为2的椭圆.它的短半轴b=
22-(
3
)
2
=1

故曲线C的方程为x2+
y2
4
=1
.(4分)
(Ⅱ)设A(x1,y1),B(x2,y2),其坐标满足
x2+
y2
4
=1
y=kx+1.

消去y并整理得(k2+4)x2+2kx-3=0,
x1+x2=-
2k
k2+4
x1x2=-
3
k2+4
.(6分)
OA
OB
,即x1x2+y1y2=0.而y1y2=k2x1x2+k(x1+x2)+1,
于是x1x2+y1y2=-
3
k2+4
-
3k2
k2+4
-
2k2
k2+4
+1=
-4k2+1
k2+4

所以k=±
1
2
时,x1x2+y1y2=0,故
OA
OB
.(8分)
k=±
1
2
时,x1+x2=?
4
17
x1x2=-
12
17
|AB|
=
(x2-x1)2+(y2-y1)2
=
(1+k2)(x2-x1)2

而(x2-x12=(x2+x12-4x1x2=
42
172
+4×
4×3
17
=
43×13
172

所以
|AB|
=
4
65
17
.(12分)
点评:本小题主要考查平面向量,椭圆的定义、标准方程及直线与椭圆位置关系等基础知识,考查综合运用解析几何知识解决问题的能力.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

在平面直角坐标系xoy中,已知圆心在直线y=x+4上,半径为2
2
的圆C经过坐标原点O,椭圆
x2
a2
+
y2
9
=1(a>0)
与圆C的一个交点到椭圆两焦点的距离之和为10.
(1)求圆C的方程;
(2)若F为椭圆的右焦点,点P在圆C上,且满足PF=4,求点P的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在平面直角坐标系xOy中,锐角α和钝角β的终边分别与单位圆交于A,B两点.若点A的横坐标是
3
5
,点B的纵坐标是
12
13
,则sin(α+β)的值是
16
65
16
65

查看答案和解析>>

科目:高中数学 来源: 题型:

在平面直角坐标系xOy中,若焦点在x轴的椭圆
x2
m
+
y2
3
=1
的离心率为
1
2
,则m的值为
4
4

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•泰州三模)选修4-4:坐标系与参数方程
在平面直角坐标系xOy中,已知A(0,1),B(0,-1),C(t,0),D(
3t
,0)
,其中t≠0.设直线AC与BD的交点为P,求动点P的轨迹的参数方程(以t为参数)及普通方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•东莞一模)在平面直角坐标系xOy中,已知椭圆C:
x2
a2
+
y2
b2
=1(a>b>0)
的左焦点为F1(-1,0),且椭圆C的离心率e=
1
2

(1)求椭圆C的方程;
(2)设椭圆C的上下顶点分别为A1,A2,Q是椭圆C上异于A1,A2的任一点,直线QA1,QA2分别交x轴于点S,T,证明:|OS|•|OT|为定值,并求出该定值;
(3)在椭圆C上,是否存在点M(m,n),使得直线l:mx+ny=2与圆O:x2+y2=
16
7
相交于不同的两点A、B,且△OAB的面积最大?若存在,求出点M的坐标及对应的△OAB的面积;若不存在,请说明理由.

查看答案和解析>>

同步练习册答案