精英家教网 > 高中数学 > 题目详情
已知点, 是一个动点, 且直线的斜率之积为.
(1) 求动点的轨迹的方程;
(2) 设, 过点的直线两点, 若对满足条件的任意直线, 不等式恒成立, 求的最小值.
(1) (2)

试题分析:(1)设动点的坐标为, 则直线的斜率分别是,
由条件得,      2分
, 动点的轨迹的方程为      6分
(2)设点的坐标分别是,
ⅰ)当直线垂直于轴时,
    8分
ⅱ)当直线不垂直于轴时, 设直线的方程为,



,

=  综上所述的最大值是   13分
点评:求动点的轨迹方程的主要步骤:建立直角坐标系,设所求点为,找到关于所求点的关系式用坐标表示,化简整理出方程并去掉不满足题意要求的点;有关于直线与椭圆相交的问题常联立方程,利用韦达定理设而不求的方法转化,本题中要注意讨论直线斜率存在与不存在两种情况
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:填空题

若抛物线的焦点与双曲线的右焦点重合,则双曲线的离心率为      

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

已知椭圆,则以点为中点的弦所在直线方程为__________________。

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

为中心,为两个焦点的椭圆上存在一点,满足,则该椭圆的离心率为
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

坐标系与参数方程在直角坐标系中,直线的参数方程为(t 为参数)。在极坐标系(与直角坐标系取相同的长度单位,且以原点O为极点,以x轴正半轴为极轴)中,圆C的方程为
(1)求圆C的直角坐标方程;
(2)设圆C与直线交于点A,B,若点P的坐标为(2,),求|PA|+|PB|.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知椭圆C:的两个焦点为F1、F2,点P在椭圆C上,且|PF1|=,
|PF2|= , PF1⊥F1F2.        
(1)求椭圆C的方程;(6分)
(2)若直线L过圆x2+y2+4x-2y=0的圆心M交椭圆于A、B两点,且A、B关于点M对称,求直线L的方程.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

若方程表示双曲线,则实数k的取值范围是  (    )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

在直角坐标平面内,以坐标原点O为极点,x轴的非负半轴为极轴建立极坐标系.已知曲线的参数方程为,曲线的极坐标方程为
(Ⅰ)将曲线的参数方程化为普通方程;
(Ⅱ)判断曲线与曲线的交点个数,并说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(1)设椭圆与双曲线有相同的焦点是椭圆与双曲线的公共点,且的周长为,求椭圆的方程;
我们把具有公共焦点、公共对称轴的两段圆锥曲线弧合成的封闭曲线称为“盾圆”.
(2)如图,已知“盾圆”的方程为.设“盾圆”上的任意一点的距离为到直线的距离为,求证:为定值;
 
(3)由抛物线弧)与第(1)小题椭圆弧)所合成的封闭曲线为“盾圆”.设过点的直线与“盾圆”交于两点,),试用表示;并求的取值范围.

查看答案和解析>>

同步练习册答案