精英家教网 > 高中数学 > 题目详情
已知椭圆,则以点为中点的弦所在直线方程为__________________。
      

试题分析:由题意该弦所在的直线斜率存在,设弦的两个点为A,B,∵,两式相减得直线AB的斜率为,∴所求直线方程为y-2=,即
点评:“点差法”是由弦的两端点坐标代入圆锥曲线的方程,得到两个等式,两式相减,可以得到一个与弦的斜率及中点相关的式子,再结合有关条件来求解.当题目涉及弦的中点、斜率时,一般都可以用点差法来解.
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

已知椭圆的左顶点,过右焦点且垂直于长轴的弦长为
(Ⅰ)求椭圆的方程;
(Ⅱ)若过点的直线与椭圆交于点,与轴交于点,过原点与平行的直线与椭圆交于点,求证:为定值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

设椭圆的左、右焦点分别为为椭圆上异于长轴端点的一点,,△的内心为I,则(   )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

抛物线的焦点坐标是(   )
A.B.(1,0)C.D.(0,1)

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知椭圆的左焦点F为圆的圆心,且椭圆上的点到点F的距离最小值为
(I)求椭圆方程;
(II)已知经过点F的动直线与椭圆交于不同的两点A、B,点M(),证明:为定值。

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知抛物线,的焦点为F,直线与抛物线C交于AB两点,则(    )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

双曲线的渐近线为
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知点, 是一个动点, 且直线的斜率之积为.
(1) 求动点的轨迹的方程;
(2) 设, 过点的直线两点, 若对满足条件的任意直线, 不等式恒成立, 求的最小值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知椭圆的离心率为,直线过点,且与椭圆相切于点.(Ⅰ)求椭圆的方程;(Ⅱ)是否存在过点的直线与椭圆相交于不同的两点,使得?若存在,试求出直线的方程;若不存在,请说明理由.

查看答案和解析>>

同步练习册答案