精英家教网 > 高中数学 > 题目详情
若x、y满足不等式组
x-y≥0
x-3y+2≤0
x+y-6≤0
的,求z=
y+1
x-2
的取值范围是
 
考点:简单线性规划
专题:不等式的解法及应用
分析:作出不等式组对应的平面区域,利用z的几何意义即可得到结论.
解答: 解:作出不等式组对应的平面区域如图:
z的几何意义为点P(x,y)到定点D(2,-1)的斜率,
则由图象可知AD的斜率最小,BD的斜率最大,
x-y=0
x-3y+2=0
,解得
x=1
y=1
,即A(1,1),
x-3y+2=0
x+y-6=0
,解得
x=4
y=2
,即B(4,2),
则AD的斜率就k=
1+1
1-2
=-2
,BD的斜率k=
2+1
4-2
=
3
2

故z的取值范围是(-∞,-2]∪[
3
2
,+∞)

故答案为:(-∞,-2]∪[
3
2
,+∞)
点评:本题主要考查线性规划的应用,根据直线斜率的定义以及斜率的取值范围是解决本题的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知在四棱锥P-ABCD中,PD⊥面ABCD,AD∥BC,CD=13,AB=12,BC=10,AD=
1
2
BC,点E、F分别是棱PB、边CD的中点,求证:EF∥面PAD.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
3
sin2x+2cos2x.
(Ⅰ)求函数f(x)的最小正周期和单调递增区间.
(Ⅱ)将f(x)的图象向右平移
π
12
个单位长度,得到函数g(x)的图象;再将得到函数g(x)的图象向下平移1个单位,同时将周期扩大1倍,得到函数h(x)的图象,分别写出函数g(x)与h(x)解析式.

查看答案和解析>>

科目:高中数学 来源: 题型:

设f(x)=-
1
3
x3+
1
2
x2+2ax.
(1)若f(x)在(
2
3
,+∞)上是单调减函数,求实数a的取值范围.
(2)当0<a<2时,f(x)在[1,4]上的最小值为-
16
3
,求f(x)在该区间的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)=
x2+bx+2,x≤0
|2-x|,x>0
若f(-4)=f(0),则函数y=f(x)-ln(x+2)的零点个数有
 
个.

查看答案和解析>>

科目:高中数学 来源: 题型:

不等式
lnx
x
-x+c≤0对任意x>0恒成立,则c的取值范围为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知f(x)=x2+ax+1,若f(|x|)有4个单调区间,则a的取值范围是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

下列函数中,满足“f(x+y)=f(x)f(y)”的单调递增函数是(  )
A、f(x)=x
1
2
B、f(x)=x3
C、f(x)=(
1
2
)x
D、f(x)=3x

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数y=f(x)的反函数是y=g(x),如果f(ab)=f(a)+f(b),则有(  )
A、g(ab)=g(a)•g(b)
B、g(a+b)=g(a)+g(b)
C、g(a+b)=g(a)•g(b)
D、g(ab)=g(a)+g(b)

查看答案和解析>>

同步练习册答案