精英家教网 > 高中数学 > 题目详情
下列函数中,满足“f(x+y)=f(x)f(y)”的单调递增函数是(  )
A、f(x)=x
1
2
B、f(x)=x3
C、f(x)=(
1
2
)x
D、f(x)=3x
考点:抽象函数及其应用
专题:函数的性质及应用
分析:根据题意,要求找到符合“对任意的x>0,y>0,函数f(x)满足f(x+y)=f(x)f(y)”的函数;分析选项.再根据指数函数的单调性即可得答案
解答: 解:对于选项A:
1
2
(x+y)
1
2
x
1
2
y
1
2
=,∴选项A不满足f(x+y)=f(x)•f(y);
对于选项B:(x+y)3≠x3y3,∴选项B不满足f(x+y)=f(x)•f(y);
对于选项C:(
1
2
)x+y
=(
1
2
)x•(
1
2
)y
,∴选项C满足f(x+y)=f(x)•f(y);y=(
1
2
)x
为单调递减函数,
对于选项D:3x•3y=3x+y,∴选项D满足f(x+y)=f(x)•f(y);y=3x为单调递增函数
故选D.
点评:本题考查了有理指数幂的运算性质,考查了基本初等函数的运算性质,是基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

两千多年前,古希腊毕达哥拉斯学派的数学家曾经在沙滩上研究数学问题,他们在沙滩上画点或用小石子来表示数,按照点或小石子能排列的形状对数进行分类,图中的实心点的个数1、5、12、22、…,被称为五角形数,其中第1个五角形数记作a1=1,第2个五角形数记作a2=5,第3个五角形数记作a3=12,第4个五角形数记作a4=22,…,若按此规律继续下去,则a5=
 
,若an=92,则n=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

若x、y满足不等式组
x-y≥0
x-3y+2≤0
x+y-6≤0
的,求z=
y+1
x-2
的取值范围是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

完成下列各题:
(Ⅰ)求函数f(x)=
3
-tanx
的定义域;
(Ⅱ)求函数f(x)=
sinx+1
cosx+3
的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知椭圆C:
x2
a2
+
y2
b2
=1(a>b>0)的离心率为
3
2
,椭圆中心到直线x+y-b=0的距离为
5
2
2

(Ⅰ)求椭圆C的方程;
(Ⅱ)设过椭圆C的右焦点F且倾斜角为45°的直线l和椭圆C交于A,B两点,对于椭圆C上任一点M,若
OM
OA
OB
,求λμ的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

设p:2x2-3x+1≤0,q:x2-(2a+1)x+a2+a≤0,若?p是?q的必要而不充分条件,则实数a的取值范围是 (  )
A、[0,
1
2
]
B、(0,
1
2
C、(-∞,0]∪[
1
2
,+∞)
D、(-∞,0)∪(
1
2
,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:

设a=log36,b=log510,c=log714 则a,b,c 按由小到大的顺序用“<”连接为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知在锐角三角形ABC中,a,b,c分别为角A,B,C的对边,a2+b2-6abcosC=0,且sin2C=2sinAsinB.(1)求角C的值;
(2)设函数f(x)=cos(ωx-
3
)-cosωx(ω>0),且f(x)两个相邻最高点之间的距离为
π
2
,求f(A)的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知正方体ABCD-A1B1C1D1中,P,Q,R分别是AA1,D1C1,BC的中点,试证明过P,Q,R的截面为正六边形,且截面与其他棱的交点为棱的中点.

查看答案和解析>>

同步练习册答案