精英家教网 > 高中数学 > 题目详情
已知椭圆C:
x2
a2
+
y2
b2
=1(a>b>0)的离心率为
3
2
,椭圆中心到直线x+y-b=0的距离为
5
2
2

(Ⅰ)求椭圆C的方程;
(Ⅱ)设过椭圆C的右焦点F且倾斜角为45°的直线l和椭圆C交于A,B两点,对于椭圆C上任一点M,若
OM
OA
OB
,求λμ的最大值.
考点:直线与圆锥曲线的关系,椭圆的标准方程
专题:圆锥曲线中的最值与范围问题
分析:(Ⅰ)利用椭圆的性质,求得a,b即可得出椭圆的方程;
(Ⅱ)根据椭圆与直线的关系,联立方程组,结合方程根与系数的关系求解即可.
解答: 解:(Ⅰ)∵e=
c
a
=
3
2
,∴c2=
3
4
a2

∴b2=a2-c2=
1
4
a2

∵椭圆中心到直线x+y-b=0的距离为
5
2
2

∴d=
b
2
=
5
2
2
,∴b=5,b2=25,a2=4b2=100,
∴椭圆的方程为
x2
100
+
y2
25
=1.
(Ⅱ)由(Ⅰ)知F(5
3
,0),
由题意可知AB方程为y=x-5
3
,①
椭圆的方程可化为x2+4y2=100,②
将①代入②消去y得5x2-40
3
x+200=0,③
设A(x1,y1),B(x2,y2),则有x1+x2=8
3
,x1x2=40,
设M(x,y),由
OM
OA
OB

(x,y)=λ(x1,y1)+μ(x2,y2)=(λx1+μx2,λy1+μy2
x=λx1x2
y=λy1y2

又点M在椭圆上,
∴x2+4y2=x1x2)2+4y1y2)2
2
x
2
1
+μ2
x
2
2
+2λμx1x2+4(λ2
y
2
1
+μ2
y
2
2
+2λμy1y2
2
x
2
1
+4
y
2
1
)+μ2
x
2
2
+4
y
2
2
)+2λμ(x1x2+4y1y2
=100,④
又A,B在椭圆上,故有
x
2
1
+4
y
2
1
=100,
x
2
2
+4
y
2
2
=100,⑤
而x1x2+4y1y2=x1x2+4(x1-5
3
)(x2-5
3
)=5x1x2-20
3
(x1+x2)+300=5×40-20
3
×8
3
+300=20,⑥
将⑤,⑥代入④可得λ22+
2λμ
5
=1,
∵1=λ2+μ2+
2λμ
5
≥2λμ+
2λμ
5
=
12
5
λμ

∴λμ≤
5
12
,当且仅当λ=μ时取“=”,则λμ的最大值为
5
12
点评:本题主要考查椭圆的方程及其性质,考查直线与椭圆的位置关系及考查学生的运算求解能力,综合性强,属于难题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

某单位用分期付款方式为职工购买40套住房,共需1150万元,购买当天先付150万元,以后每月这一天都交付50万元,并加付欠款利息,月利率为1%.若交付150万元后的第一个月算分期付款的第一个月,求分期付款的第10个月应付多少钱?最后一次应付多少钱?

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)=
x2+bx+2,x≤0
|2-x|,x>0
若f(-4)=f(0),则函数y=f(x)-ln(x+2)的零点个数有
 
个.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知f(x)=x2+ax+1,若f(|x|)有4个单调区间,则a的取值范围是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=2sin(
π
4
+
x
2
)sin(
π
4
-
x
2
)sinx,给出下列五个说法:
①f(
1921π
12
)=
1
4

②f(x)在区间[-
π
6
π
3
]上单调递增.
③f(x)的图象关于点(-
π
4
,0)成中心对称.
④将函数f(x)的图象向右平移
4
个单位可得到y=
1
2
cos2x的图象.
⑤若f(
x
2
-
π
6
)=
3
10
6
≤x≤
3
,则cosx=-
4+3
3
10

其中正确说法的序号是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

下列函数中,满足“f(x+y)=f(x)f(y)”的单调递增函数是(  )
A、f(x)=x
1
2
B、f(x)=x3
C、f(x)=(
1
2
)x
D、f(x)=3x

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=mx3+2nx2-12x的减区间(-2,2)
(1)试求m,n的值;
(2)求过点A(1,-11)且与曲线y=f(x)相切的切线方程;
(3)过点A(1,t)是否存在曲线y=f(x)相切的3条切线,若存在求实数t的取值范围;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知“命题p:x≤m”是“命题q:x2+3x-4<0”成立的必要不充分条件,则实数m的取值范围为
 
(用区间表示)

查看答案和解析>>

科目:高中数学 来源: 题型:

已知集合A={x|mx2+2x+3=0}中有且只有一个元素,则m的取值集合为
 

查看答案和解析>>

同步练习册答案