ÉèÊýÁÐ{an}µÄǰnÏîºÍΪSn£¬¶ÔÈÎÒâµÄÕýÕûÊýn£¬¶¼ÓÐan=5Sn+1³ÉÁ¢£¬¼Çbn=
4+an
1-an
(n¡ÊN*)
£®
£¨I£©ÇóÊýÁÐ{an}ÓëÊýÁÐ{bn}µÄͨÏʽ£»
£¨¢ò£©ÉèÊýÁÐ{bn}µÄǰnÏîºÍΪRn£¬ÊÇ·ñ´æÔÚÕýÕûÊýk£¬Ê¹µÃRn¡Ý4k³ÉÁ¢£¿Èô´æÔÚ£¬ÕÒ³öÒ»¸öÕýÕûÊýk£»Èô²»´æÔÚ£¬Çë˵Ã÷ÀíÓÉ£»
£¨¢ó£©¼Çcn=b2n-b2n-1£¨n¡ÊN*£©£¬ÉèÊýÁÐ{cn}µÄǰnÏîºÍΪTn£¬ÇóÖ¤£º¶ÔÈÎÒâÕýÕûÊýn¶¼ÓÐTn£¼
3
2
£®
·ÖÎö£º£¨1£©¸ù¾ÝÌâÖиøµÄan=5Sn+1£¬¼Ì¶ø¿ÉµÃan-1=5sn-1+1£¬Á½Ê½×ÓÏà¼õµÃ£¬an-an-1=5an£¬Òò´Ëan=-
1
4
an-1
£¬Òò¶ø¿ÉµÃ³öan£¬bnµÄͨÏʽ£®
£¨2£©¸ù¾ÝbnµÄͨÏʽ£¬Ëã³öµÄǰnÏîºÍΪRn£¬ÔÙ¼ÆËã³öÊÇ·ñ´æÔÚÕýÕûÊýk£®
£¨3£©¸ù¾ÝbnµÄͨÏʽ£¬¼ÆËã³öcnµÄͨÏʽ£¬ÔٱȽÏTnÓë
3
2
µÄ´óС£®
½â´ð£º½â£º£¨ I£©µ±n=1ʱ£¬a1=5S1+1£¬¡àa1=-
1
4

ÓÖ¡ßan=5Sn+1£¬an+1=5Sn+1+1¡àan+1-an=5an+1£¬¼´
an+1
an
=-
1
4

¡àÊýÁÐ{an}ÊÇÊ×ÏîΪa1=-
1
4
£¬¹«±ÈΪq=-
1
4
µÄµÈ±ÈÊýÁУ¬
¡àan=(-
1
4
)n
£¬bn=
4+(-
1
4
)
n
1-(-
1
4
)
n
(n¡ÊN*)

£¨ II£©²»´æÔÚÕýÕûÊýk£¬Ê¹µÃRn¡Ý4k³ÉÁ¢£®
Ö¤Ã÷£ºÓÉ£¨I£©Öªbn=
4+(-
1
4
)
n
1-(-
1
4
)
n
=4+
5
(-4)n-1

¡ßb2k-1+b2k=8+
5
(-4)2k-1-1
+
5
(-4)2k-1
=8+
5
16k-1
-
20
16k+4
=8-
15¡Á16k-40
(16k-1)(16k+4)
£¼8
£®
¡àµ±nΪżÊýʱ£¬Éèn=2m£¨m¡ÊN*£©
¡àRn=£¨b1+b2£©+£¨b3+b4£©+¡­+£¨b2m-1+b2m£©£¼8m=4n
µ±nÎªÆæÊýʱ£¬Éèn=2m-1£¨m¡ÊN*£©
¡àRn=£¨b1+b2£©+£¨b3+b4£©+¡­+£¨b2m-3+b2m-2£©+b2m-1£¼8£¨m-1£©+4=8m-4=4n
¡à¶ÔÓÚÒ»ÇеÄÕýÕûÊýn£¬¶¼ÓÐRn£¼4k
¡à²»´æÔÚÕýÕûÊýk£¬Ê¹µÃRn¡Ý4k³ÉÁ¢£®
£¨III£©ÓÉbn=4+
5
(-4)n-1
µÃcn=b2n-b2n-1=
5
42n-1
+
5
42n-1+1
=
25¡Á16n
(16n-1)(16n+4)
=
25¡Á16n
(16n)2+3¡Á16n-4
£¼
25¡Á16n
(16n)2
=
25
16n

ÓÖb1=3£¬b2=
13
3
£¬¡àc2=
4
3
£¬µ±n=1ʱ£¬T1£¼
3
2
£¬
µ±n¡Ý2ʱ£¬
Tn£¼
4
3
+25¡Á(
1
162
+
1
163
+¡­+
1
16n
)=
4
3
+25¡Á
1
162
[1-(
1
16
)
n-2
]
1-
1
16

£¼
4
3
+25¡Á
1
162
1-
1
16
=
69
48
£¼
3
2
£®
µãÆÀ£º´ËÌâÖ÷Òª¿¼²éÊýÁеÝÍÆÊ½µÄÇó½â¼°Ïà¹Ø¼ÆË㣮
Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

ÉèÊýÁÐ{an}µÄǰnÏîµÄºÍΪSn£¬ÇÒSn=3n+1£®
£¨1£©ÇóÊýÁÐ{an}µÄͨÏʽ£»
£¨2£©Éèbn=an£¨2n-1£©£¬ÇóÊýÁÐ{bn}µÄǰnÏîµÄºÍ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

ÉèÊýÁÐanµÄǰnÏîµÄºÍΪSn£¬a1=
3
2
£¬Sn=2an+1-3
£®
£¨1£©Çóa2£¬a3£»
£¨2£©ÇóÊýÁÐanµÄͨÏʽ£»
£¨3£©Éèbn=(2log
3
2
an+1)•an
£¬ÇóÊýÁÐbnµÄǰnÏîµÄºÍTn£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

ÉèÊýÁÐ{an}µÄǰnÏîºÍSn=2an+
3
2
¡Á£¨-1£©n-
1
2
£¬n¡ÊN*£®
£¨¢ñ£©ÇóanºÍan-1µÄ¹ØÏµÊ½£»
£¨¢ò£©ÇóÊýÁÐ{an}µÄͨÏʽ£»
£¨¢ó£©Ö¤Ã÷£º
1
S1
+
1
S2
+¡­+
1
Sn
£¼
10
9
£¬n¡ÊN*£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

²»µÈʽ×é
x¡Ý0
y¡Ý0
nx+y¡Ü4n
Ëù±íʾµÄÆ½ÃæÇøÓòΪDn£¬ÈôDnÄÚµÄÕûµã£¨Õûµã¼´ºá×ø±êºÍ×Ý×ø±ê¾ùΪÕûÊýµÄµã£©¸öÊýΪan£¨n¡ÊN*£©
£¨1£©Ð´³öan+1ÓëanµÄ¹ØÏµ£¨Ö»Ðè¸ø³ö½á¹û£¬²»ÐèÒª¹ý³Ì£©£¬
£¨2£©ÇóÊýÁÐ{an}µÄͨÏʽ£»
£¨3£©ÉèÊýÁÐanµÄǰnÏîºÍΪSnÇÒTn=
Sn
5•2n
£¬Èô¶ÔÒ»ÇеÄÕýÕûÊýn£¬×ÜÓÐTn¡Üm³ÉÁ¢£¬ÇómµÄ·¶Î§£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

£¨2013•Ö£ÖÝһ죩ÉèÊýÁÐ{an}µÄǰnÏîºÍSn=2n-1£¬Ôò
S4
a3
µÄֵΪ£¨¡¡¡¡£©

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸