精英家教网 > 高中数学 > 题目详情
已知实数x,y满足
x+y-3≥0
x+2y-5≤0
x≥0
y≥0
,则y-2x的最大值是
 
考点:简单线性规划
专题:数形结合,不等式的解法及应用
分析:由约束条件作出可行域,化目标函数为直线方程的斜截式,数形结合得到最优解,求得最优解的坐标,代入目标函数得答案.
解答: 解:由约束条件
x+y-3≥0
x+2y-5≤0
x≥0
y≥0
作出可行域如图,

令z=y-2x,化为y=2x+z,
联立
x+2y-5=0
x+y-3=0
,解得C(1,2).
由图可知,当直线过C时,y-2x有最大值为2-2×1=0.
故答案为:0.
点评:本题考查了简单的线性规划,考查了数形结合的解题思想方法,是中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知直线l1:(3+a)x-4y=5-3a;l2:2x-(5+a)y=8
(1)a为何值时,l1⊥l2
(2)当a=0时,求圆C:x2+y2+4x-12y+39=0关于直线l1对称的圆的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知点P为椭圆x2+4y2=16上,则点P到直线y=x-5的最短距离为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

设0<x<
3
2
,则函数y=x(3-2x)的最大值是(  )
A、
9
16
B、
9
4
C、2
D、
9
8

查看答案和解析>>

科目:高中数学 来源: 题型:

(1)证明函数y=x+
2
x
在区间(0,
2
]
为单调递减函数;
(2)写出函数y=x+
a
x
(a>0)的单调递减区间.(不需要给出证明过程)

查看答案和解析>>

科目:高中数学 来源: 题型:

若f(x)=x2-x+b且f(log2a)=b,log2f(a)=2(a≠1).
(1)求a,b的值;
(2)求f(log2x)的最小值及对应的x的值;
(3)令g(x)=log2f(x),求g(x)在[0,m]上的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

下列函数中,在区间(0,2)上为增函数的是(  )
A、y=-3x+2
B、y=
3
x
C、y=x2-4x+5
D、y=-3x2+15x-10

查看答案和解析>>

科目:高中数学 来源: 题型:

已知f(x)=2+log3x,x∈[1,9]
(1)求y=[f(x)]2+f(x2)的定义域;
(2)求y=[f(x)]2+f(x2)的最大值及当y取最大值时x的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知y=f(x)是定义在R上的奇函数,当x≥0时,f(x)=x(x-2),则当x<0时f(x)上的表达式为(  )
A、y=x(x-2)
B、y=x(x+2)
C、y=-x(x-2)
D、y=-x(x+2)

查看答案和解析>>

同步练习册答案