精英家教网 > 高中数学 > 题目详情
19.在60°的∠XAY内部有一点P,P到边AX的距离是PC=2,P是AY的距离是PB=11,则点P到顶点A的距离是14.

分析 延长BP,AC交于点D,构造出两个特殊的直角三角形,易得PD的值,也就求得了BP的值,进而求得AB的值,利用勾股定理即可求得AP的值.

解答 解:延长BP,AC交于点D,连接AP.
∵∠D=30°,PC=2,
∴PD=4,
∴BD=BP+PD=15,
∴AB=5$\sqrt{3}$,
∴PA=$\sqrt{75+121}$=14.
故答案为:14

点评 考查解直角三角形的相关知识;把四边形转换为直角三角形求解是常用的解题思路.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

19.设全集为R,集合A={x|0<x≤2},B={x|x<-1或x>1},C={x|x≤a}.
(1)求A∩B,A∪B,(∁RA)∩B;
(2)若∁RA∪C=R,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.已知双曲线的左右焦点为F1,F2,梯形的顶点A,B在双曲线上且F1A=AB=F2B,F1F2∥AB,则双曲线的离心率的取值范围是(2,3).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.方程x3-3x2-a=0满足下列条件时,则a的值或范围.
(1)恰有一个实根;
(2)有两个不等实根;
(3)三个不等实根;
(4)有没有可能无实根.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知不等式a≤x≤a+1成立时,不等式2≤x≤3a+1也成立,求实数a的范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.在平行四边形ABCD中,E,F分别是BC,CD的中点,DE交AF于点H,记$\overrightarrow{AB}$、$\overrightarrow{BC}$分别为$\overrightarrow{a}$,$\overrightarrow{b}$,则$\overrightarrow{AH}$=$\frac{2}{5}\overrightarrow{a}$$+\frac{4}{5}\overrightarrow{b}$(用$\overrightarrow{a}$,$\overrightarrow{b}$表示)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知(logab)2+${2}^{lo{g}_{b}a}$=$\frac{17}{4}$,且a>b>1,能否确定a-a和b-2b的大小关系?若能,比较其大小;若不能,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.如图,在四棱锥P-ABCD中,PD⊥平面ABCD,PA⊥PC,∠ADC=120°,底面ABCD为菱形,G为PC的中点,E,F分别为AB,PB上一点,AB=4$\sqrt{2}$,AE=$\sqrt{2}$,PB=4PF.
(1)求证:EF∥平面BDG;
(2)求二面角C-DF-B的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.给出下列四个命题:
①“三个球全部放入两个盒子,其中必有一个盒子有一个以上的球”是必然事件;
②“没有水分,种子能发芽”是不可能事件;    
③“明天五指山要下雨”是必然事件;
④“从100个灯泡中取出5个,5个都是次品”是随机事件.
其中正确命题的个数是(  )
A.0B.1C.2D.3

查看答案和解析>>

同步练习册答案