精英家教网 > 高中数学 > 题目详情

【题目】已知函数

(1)若对于恒成立,求实数的取值范围

(2)若对于恒成立,求实数的取值范围.

【答案】1;(2

【解析】

分析:(1)f(x)<0对任意x∈R恒成立,则m=0,或

,解得实数m的取值范围;(2)由题意得m(x-2+m-6<0,x∈[1,3]恒成立,

g(x)=m(x-2+m-6<0,x∈[1,3],利用函数的单调性质能求出m的取值范围.

详解:

(1)要使mx2mx-1<0恒成立,

m=0,显然-1<0,满足题意;

m≠0,则-4<m<0.

实数m的范围.

(2)当x∈[1,3]时,f(x)<-m+5恒成立,

即当x∈[1,3]时,m(x2x+1)-6<0恒成立.

x2x+1= >0,

m(x2x+1)-6<0,∴m<.

∵函数y在[1,3]上的最小值为,∴只需m<即可.

综上所述,m的取值范围是.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知向量,函数的最小值为.

(1)当时,求的值;

(2)求

(3)已知函数为定义在上的增函数,且对任意的都满足,问:是否存在这样的实数,使不等式对所有恒成立,若存在,求出的取值范围;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

判断的单调性

上的最小值为2的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】纹样是中国艺术宝库的瑰宝,火纹是常见的一“种传统纹样.为了测算某火纹纹样(如图阴影部分所示)的面积,作一个边长为的正方形将其包含在内,并向该正方形内随机投掷个点,已知恰有个点落在阴影部分,据此可估计阴影部分的面积是( )

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】定义在上的函数满足且当若对任意的不等式恒成立则实数的最大值是( )

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知二次函数同时满足:①在定义域内存在,使得成立;

②不等式的解集有且只有一个元素;数列的前项和为

(Ⅰ)求的表达式;

(Ⅱ)求数列的通项公式;

(Ⅲ)设的前项和为,若对任意,且恒成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图是函数yf(x)的导函数yf′(x)的图象则下面判断正确的是(   )

A. (21)f(x)是增函数 B. (13)f(x)是减函数

C. x2f(x)取极大值 D. x4f(x)取极大值

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系xOy中,已知椭圆 =l (a>b>0)的焦距为2,离心率为 ,椭圆的右顶点为A.

(1)求该椭圆的方程:
(2)过点D( ,﹣ )作直线PQ交椭圆于两个不同点P,Q,求证:直线AP,AQ的
斜率之和为定值.

查看答案和解析>>

同步练习册答案