精英家教网 > 高中数学 > 题目详情
11.设x∈R,向量$\overrightarrow a=({x,1}),\overrightarrow b=({4,-2})$,且$\overrightarrow a∥\overrightarrow b$,则$|{\overrightarrow a+\overrightarrow b}|$=(  )
A.$\sqrt{5}$B.5C.$\sqrt{85}$D.85

分析 根据向量平行求出x的值,在计算模长$|{\overrightarrow a+\overrightarrow b}|$.

解答 解:向量$\overrightarrow a=({x,1}),\overrightarrow b=({4,-2})$,且$\overrightarrow a∥\overrightarrow b$,
∴4×1-(-2)•x=0,
解得x=-2,
∴$\overrightarrow{a}$=(-2,1);
∴$\overrightarrow{a}$+$\overrightarrow{b}$=(2,-1),
∴$|{\overrightarrow a+\overrightarrow b}|$=$\sqrt{{{2}^{2}+(-1)}^{2}}$=$\sqrt{5}$.
故选:A.

点评 本题考查了平面向量的共线定理与模长公式的应用问题,是基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

17.已知点O(0,0),A(-1,3),B(2,-4),$\overrightarrow{OP}$=2$\overrightarrow{OA}$+m$\overrightarrow{AB}$,若点P在y袖上,则实数m=$\frac{2}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.某校高三(1)班全体女生的一次数学测试成绩的茎叶图和频率分布直方图都受到不同程度的破坏,但可见部分如下,据此解答如下问题:

(1)求高三(1)班全体女生的人数;
(2)求分数在[80,90)之间的女生人数;并计算频率分布直方图中[80,90)间的矩形的高;
(3)求该班女生数学测试成绩的众数、中位数和平均数的估计值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.已知点P在直线$l:\sqrt{3}x-y+2=0$上,点Q在圆C:x2+y2+2y=0上,则P、Q两点距离的最小值为$\frac{1}{2}$   .

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.在平面直角坐标系xOy中,已知圆${C_1}:{(x+3)^2}+{(y-1)^2}=4$和圆${C_2}:{(x-4)^2}+{(y-5)^2}=4$.
(1)若直线l过点A(-1,0),且与圆C1相切,求直线l的方程;
(2)设P为直线$x=-\frac{3}{2}$上的点,满足:过点P的无穷多对互相垂直的直线l1和l2,它们分别与圆C1和圆C2相交,且直线l1被圆C1截得的弦长与直线l2被圆C2截得的弦长相等.试求满足条件的点P的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.设a,b,c>0,则$a+\frac{1}{b},b+\frac{1}{c},c+\frac{1}{a}$(  )
A.都不大于2B.都不小于2
C.至少有一个不大于2D.至少有一个不小于2

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.某几何体的三视图中的三角形都是直角三角形.如图所示.则该几何体中直角三角形的个数为(  )
A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.在棱长为2的正方体ABCD-A1B1C1D1中,M是棱A1D1的中点,过C1,B,M作正方体的截面,则这个截面的面积为(  )
A.$\frac{3\sqrt{5}}{2}$B.$\frac{3\sqrt{5}}{8}$C.$\frac{9}{2}$D.$\frac{9}{8}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.已知椭圆E的中心为原点O,焦点在x轴上,E上的点与E的两个焦点构成的三角形面积的最大值为12,直线4x+5y+12=0交椭圆于E于M,N两点.设P为线段MN的中点,若直线OP的斜率等于$\frac{4}{5}$,则椭圆E的方程为$\frac{x^2}{25}+\frac{y^2}{16}=1$.

查看答案和解析>>

同步练习册答案