精英家教网 > 高中数学 > 题目详情

【题目】将函数f(x)=2sin(2x﹣ )的图象向左平移 个单位,得到函数g(x)的图象,则函数g(x)的一个单调递减区间是(
A.[﹣ ,0]
B.[﹣ ,0]
C.[0, ]
D.[ ]

【答案】D
【解析】解:将函数f(x)=2sin(2x﹣ )的图象向左平移 个单位,得到函数g(x)=2sin[2(x+ )﹣ ]=2sin(2x+ )的图象,
令2kπ+ ≤2x+ ≤2kπ+ ,求得 kπ+ ≤x≤kπ+
则函数g(x)的一个单调递减区间为[kπ+ ,kπ+ ],k∈Z,
结合所给的选项,
故选:D.
【考点精析】解答此题的关键在于理解函数y=Asin(ωx+φ)的图象变换的相关知识,掌握图象上所有点向左(右)平移个单位长度,得到函数的图象;再将函数的图象上所有点的横坐标伸长(缩短)到原来的倍(纵坐标不变),得到函数的图象;再将函数的图象上所有点的纵坐标伸长(缩短)到原来的倍(横坐标不变),得到函数的图象.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】在直角坐标系xOy中,圆C的参数方程 (φ为参数).以O为极点,x轴的非负半轴为极轴建立极坐标系.
(1)求圆C的极坐标方程;
(2)直线l的极坐标方程是ρ(sinθ+ )=3 ,射线OM:θ= 与圆C的交点为O,P,与直线l的交点为Q,求线段PQ的长.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=2sin ﹣4sin2 ,x∈R.
(1)求f(x)的最小正周期;
(2)求f(x)的区间[ ]上的最大值和最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】淘宝网卖家在某商品的所有买家中,随机选择男、女买家各50位进行调查,他们的评分等级如下表:

(1)从评分等级为(4,5]的人中随机选取2人,求恰有1人是男性的概率.

(2)现规定评分等级在[0,3]为不满意该商品,在(3,5]为满意该商品.完成下列2×2列联表,并帮助卖家判断能否在犯错误的概率不超过0.05的前提下认为是否满意该商品与性别有关.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】函数f(x)=axn(1﹣x)(x>0,n∈N*),当n=﹣2时,f(x)的极大值为
(1)求a的值;
(2)求证:f(x)+lnx≤0;
(3)求证:f(x)<

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知曲线为参数),为参数).

(1)化的参数方程为普通方程,并说明它们分别表示什么曲线;

(2)若上的点对应的参数为上的动点,求的中点到直线为参数)距离的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥P﹣ABCD中,底面ABCD为矩形,PA⊥平面ABCD,E为PD的中点.

(1)证明:PB∥平面AEC;
(2)已知AP=AB=1,AD= ,求二面角D﹣AE﹣C的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】线段AB外有一点C,∠ABC=60°,AB=200 km,汽车以80 km/h的速度由A向B行驶,同时摩托车以50 km/h的速度由B向C行驶,则运动开始________h后,两车的距离最小.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】分别为椭圆的左、右焦点,点为椭圆的左顶点,点为椭圆的上顶点,且.

(1)若椭圆的离心率为,求椭圆的方程;

(2)设为椭圆上一点,且在第一象限内,直线轴相交于点,若以为直径的圆经过点,证明:点在直线上.

查看答案和解析>>

同步练习册答案