精英家教网 > 高中数学 > 题目详情

【题目】已知定义在R上的奇函数f(x),满足f(x﹣2)=﹣f(x),且当x∈[0,1]时,f(x)=x2+x+sinx,若方程f(x)=m(m>0)在区间[﹣4,4]上有四个不同的根x1 , x2 , x3 , x4 , 则x1+x2+x3+x4的值为( )
A.2
B.﹣2
C.4
D.﹣4

【答案】D
【解析】解:∵f(x﹣2)=﹣f(x),

∴f(x﹣4)=﹣f(x﹣2)=f(x),

即函数的周期是4,

且f(x﹣2)=﹣f(x)=f(﹣x),

则函数的对称轴为:x=﹣1,f(x)是奇函数,

所以x=1也是对称轴,x∈[0,1]时,f(x)=x2+x+sinx,

函数是增函数,

作出函数f(x)的简图,

若方程f(x)=m(m>0)在区间[﹣4,4]上

有四个不同的根x1,x2,x3,x4

则四个根分别关于x=1和x=3对称,

不妨设x1<x2<x3<x4

则x1+x2=﹣6,x3+x4=2,

则x1+x2+x3+x4=﹣6+2=﹣4,

所以答案是:D.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】设数列 的前 n 项和为 Sn ,且(3-m)Sn+2man=m+3() ,其中 m 为常数,且 .
①求证: 是等比数列;
②若数列 的公比为q=f(m) ,数列 {bn} 满足 b1=a1 ,求证: 为等差数列.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】数列{an}的前n项和为Sn , 且Sn=n(n+1),n∈N*
(1)求数列{an}的通项公式;
(2)若数列{bn}满足: ,求数列{bn}的通项公式;
(3)令 ,求数列{cn}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数
(1)求函数y=f(x)的周期,并写出其单调递减区间;
(2)当 时,求f(x)的最大值与最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图是2007年在广州举行的全国少数民族运动会上,七位评委为某民族舞蹈打出的分数的茎叶统计图,去掉一个最高分和一个最低分后,所剩数据的平均数和方差分别为( )

A.84,4.84
B.84,1.6
C.85,1.6
D.85,4

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在如图的平面多边形ACBEF中,四边形ABEF是矩形,点O为AB的中点,△ABC中,AC=BC,现沿着AB将△ABC折起,直至平面ABEF⊥平面ABC,如图,此时OE⊥FC.
(1)求证:OF⊥EC;
(2)若FC与平面ABC所成角为30°,求二面角F﹣CE﹣B的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】由代数式的乘法法则类比推导向量的数量积的运算法则:
①mn=nm类比得到ab=ba;
②(m+n)t=mt+nt类比得到(a+b)c=ac+bc;
③(mn)t=m(nt) 类比得到(ab)c=a(bc);
④t≠0,mt=rtm=r类比得到p≠0,ap=bpa=b;
⑤|mn|=|m||n|类比得到|ab|=|a||b|;
= 类比得到
以上式子中,类比得到的结论正确的序号是

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某少数民族的刺绣有着悠久的历史,图(1)、(2)、(3)、(4)为她们刺绣最简单的四个图案,这些图案都由小正方形构成,小正方形数越多刺绣越漂亮,现按同样的规律刺绣(小正方形的摆放规律相同),设第n个图形包含f(n)个小正方形.
(Ⅰ)求出f(5);
(Ⅱ)利用合情推理的“归纳推理思想”归纳出f(n+1)与f(n)的关系式,并根据你得到的关系式求f(n)的表达式.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设动点P在棱长为1的正方体ABCD﹣A1B1C1D1的对角线BD1上,记 =λ.当∠APC为锐角时,λ的取值范围是

查看答案和解析>>

同步练习册答案