精英家教网 > 高中数学 > 题目详情
19.某几何体的三视图如图所示,则该几何体的体积是(  )
A.10B.15C.18D.20

分析 根据已知中的三视图,可得该几何体是一个以俯视图为底面的四棱锥,代入锥体体积公式,可得答案.

解答 解:根据已知中的三视图,可得该几何体是一个以俯视图为底面的四棱锥,
其底面面积S=$\frac{1}{2}$(3+6)×2-$\frac{1}{2}$×3×1=$\frac{15}{2}$,
高h=6,
故体积V=$\frac{1}{3}Sh$=15,
故选:B.

点评 本题考查的知识点是棱锥的体积和表面积,简单几何体的三视图,难度中档.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

9.已知a,b,c为实数,2a+4b=2c,4a+2b+1=4c,则c的最小值为$lo{g}_{2}\frac{3}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.沿一个正方体三个面的对角线截得的几何体如图所示,若正视图的视线方向与前面的三角形面垂直,则该几何体的左视图为(  )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.在平面直角坐标系xOy中,曲线C1:$\left\{\begin{array}{l}{x=\frac{\sqrt{3}}{2}t}\\{y=\frac{1}{2}t}\end{array}\right.$(t为参数),在以O为极点,x轴正半轴为极轴的极坐标系中,曲线C2:ρ=2sinθ,曲线C3:ρ=2$\sqrt{3}$cosθ.
(Ⅰ)求曲线C1的极坐标方程;
(Ⅱ)若曲线C1分别与曲线C2、C3相交于点A、B(A、B均异于原点O),求|AB|的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.如图是两个腰长均为10cm的等腰直角三角形拼成的一个四边形ABCD,现将四边形ABCD沿BD折成直二面角A-BD-C,则三棱锥A-BCD的外接球的体积为500$\sqrt{3}$cm3

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.执行如图所示的程序框图,如果输入的a=918,b=238,则输出的n=(  )
A.2B.3C.4D.34

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知函数f(x)=$\frac{1}{3}$x3-alnx-$\frac{1}{3}$(a∈R,a≠0)
(1)当a=3时,求曲线y=f(x)在点(1,f(1))处的切线方程;
(2)若对任意的x∈[1,+∞),都有f(x)≥0恒成立,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.设a,b,c分别是△ABC三个内角∠A,∠B,∠C的对边,若向量$\overrightarrow m=({1-cos(A+B),cos\frac{A-B}{2}})$,$\overrightarrow n=({\frac{5}{8},cos\frac{A-B}{2}})$,且$\overrightarrow m•\overrightarrow n=\frac{9}{8}$.
(1)求tanA•tanB的值;
(2)求$\frac{{2{S_{△ABC}}}}{{{a^2}+{b^2}-{c^2}}}$的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.设Tn为数列{an}的前n项之积,即Tn=a1a2a3…an-1an,若${a_1}=2,\frac{1}{{{a_n}-1}}-\frac{1}{{{a_{n-1}}-1}}=1$,当Tn=11时,n的值为10.

查看答案和解析>>

同步练习册答案