精英家教网 > 高中数学 > 题目详情
4.执行如图所示的程序框图,如果输入的a=918,b=238,则输出的n=(  )
A.2B.3C.4D.34

分析 根据程序框图模拟进行求解即可.

解答 解:输入a=918,b=238,n=0,
r=204,a=238,b=204,n=1,
r=34,a=204,b=34,n=2,
r=0,输出n=2,
故选:A.

点评 本题主要考查程序框图的识别和运行,比较基础.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

14.某几何体三视图如图,则该几何体的外接球的表面积是(  )
A.B.$\frac{25π}{2}$C.12πD.25π

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.在边长为a的等边三角形ABC中,AD⊥BC于D,沿AD折成二面角B-AD-C后,BC=$\frac{1}{2}$a,这时二面角B-AD-C的大小为(  )
A.$\frac{π}{3}$B.$\frac{π}{6}$C.$\frac{π}{4}$D.$\frac{π}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.运行如图所示的程序框图,则输出结果为(  )
A.$\frac{11}{8}$B.$\frac{5}{4}$C.$\frac{3}{2}$D.$\frac{23}{16}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.某几何体的三视图如图所示,则该几何体的体积是(  )
A.10B.15C.18D.20

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.定义域为R的函数f(x)满足f(x+2)=2f(x),当x∈[0,2)时,f(x)=$\left\{\begin{array}{l}{{x}^{2}-x,x∈[0,1)}\\{-(\frac{1}{2})^{|x-\frac{3}{2}|}x∈[1,2)}\end{array}\right.$,若当x∈[-4,-2)时,不等式f(x)≥$\frac{{t}^{2}}{4}$-t+$\frac{1}{2}$恒成立,则实数t的取值范围是(  )
A.[2,3]B.[1,3]C.[1,4]D.[2,4]

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.设z=1+i(i是虚数单位),O为坐标原点,若复数$\frac{2}{z}+{z^2}$在复平面内对应的向量为$\overrightarrow{OZ}$,则向量$\overrightarrow{OZ}$的模是(  )
A.1B.2C.$\sqrt{3}$D.$\sqrt{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知集合A={a1,a2,…,an},ai∈R,i=1,2,…,n,并且n≥2. 定义$T(A)=\sum_{1≤i<j≤n}{|{a_j}-{a_i}}|$(例如:$\sum_{1≤i<j≤3}{|{a_j}-{a_i}|}=|{a_2}-{a_1}|+|{a_3}-{a_1}|+|{a_3}-{a_2}|$).
(Ⅰ)若A={1,2,3,4,5,6,7,8,9,10},M={1,2,3,4,5},集合A的子集N满足:N≠M,且T(M)=T(N),求出一个符合条件的N;
(Ⅱ)对于任意给定的常数C以及给定的集合A={a1,a2,…,an},求证:存在集合B={b1,b2,…,bn},使得T(B)=T(A),且$\sum_{i=1}^n{b_i}=C$.
(Ⅲ)已知集合A={a1,a2,…,a2m}满足:ai<ai+1,i=1,2,…,2m-1,m≥2,a1=a,a2m=b,其中a,b∈R为给定的常数,求T(A)的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知两点$A(-\sqrt{2},0),B(\sqrt{2},0)$,动点P在y轴上的投影是Q,且$2\overrightarrow{PA}•\overrightarrow{PB}=|\overrightarrow{PQ}{|^2}$.
(Ⅰ)求动点P的轨迹C的方程;
(Ⅱ)过F(1,0)作互相垂直的两条直线交轨迹C于点G,H,M,N,且E1,E2分别是GH,MN的中点.求证:直线E1E2恒过定点.

查看答案和解析>>

同步练习册答案