精英家教网 > 高中数学 > 题目详情
16.设z=1+i(i是虚数单位),O为坐标原点,若复数$\frac{2}{z}+{z^2}$在复平面内对应的向量为$\overrightarrow{OZ}$,则向量$\overrightarrow{OZ}$的模是(  )
A.1B.2C.$\sqrt{3}$D.$\sqrt{2}$

分析 利用复数的除法的运算法则化简复数$\frac{2}{z}+{z^2}$,然后求解向量$\overrightarrow{OZ}$的模.

解答 解:z=1+i(i是虚数单位),
复数$\frac{2}{z}+{z^2}$=$\frac{2}{1+i}$+(1+i)2=$\frac{2(1-i)}{(1+i)(1-i)}$+2i=1+i.
向量$\overline{OZ}$的模是$\sqrt{2}$,
故选:D.

点评 本题考查复数的代数形式混合运算,复数的模的求法,考查计算能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

6.一个几何体的三视图如图所示,则这个几何体的外接球的体积为$\frac{\sqrt{2}π}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.在平面直角坐标系xOy中,曲线C1:$\left\{\begin{array}{l}{x=\frac{\sqrt{3}}{2}t}\\{y=\frac{1}{2}t}\end{array}\right.$(t为参数),在以O为极点,x轴正半轴为极轴的极坐标系中,曲线C2:ρ=2sinθ,曲线C3:ρ=2$\sqrt{3}$cosθ.
(Ⅰ)求曲线C1的极坐标方程;
(Ⅱ)若曲线C1分别与曲线C2、C3相交于点A、B(A、B均异于原点O),求|AB|的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.执行如图所示的程序框图,如果输入的a=918,b=238,则输出的n=(  )
A.2B.3C.4D.34

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知函数f(x)=$\frac{1}{3}$x3-alnx-$\frac{1}{3}$(a∈R,a≠0)
(1)当a=3时,求曲线y=f(x)在点(1,f(1))处的切线方程;
(2)若对任意的x∈[1,+∞),都有f(x)≥0恒成立,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.若函数f(x)=ln(x2+1)的值域为{0,1,2},从满足条件的所有定义域集合中选出2个集合,则取出的2个集合中各有三个元素的概率是(  )
A.$\frac{1}{6}$B.$\frac{1}{7}$C.$\frac{1}{8}$D.$\frac{1}{9}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.设a,b,c分别是△ABC三个内角∠A,∠B,∠C的对边,若向量$\overrightarrow m=({1-cos(A+B),cos\frac{A-B}{2}})$,$\overrightarrow n=({\frac{5}{8},cos\frac{A-B}{2}})$,且$\overrightarrow m•\overrightarrow n=\frac{9}{8}$.
(1)求tanA•tanB的值;
(2)求$\frac{{2{S_{△ABC}}}}{{{a^2}+{b^2}-{c^2}}}$的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.直线$l:\left\{\begin{array}{l}x=tcosα\\ y=tsinα\end{array}\right.$(t为参数)与圆C:(x+6)2+y2=25交于A,B两点,且$|{AB}|=\sqrt{10}$,则直线l的斜率为±$\frac{\sqrt{15}}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.如图,已知AC是圆O的直径,PA⊥平面ABCD,E是PC的中点,∠DAC=∠AOB.
(1)证明:BE∥平面PAD
(2)求证:平面BEO⊥平面PCD.

查看答案和解析>>

同步练习册答案