精英家教网 > 高中数学 > 题目详情
6.如图,已知AC是圆O的直径,PA⊥平面ABCD,E是PC的中点,∠DAC=∠AOB.
(1)证明:BE∥平面PAD
(2)求证:平面BEO⊥平面PCD.

分析 (1)证明平面OEB∥平面PAD,即可证明BE∥平面PAD;
(2)证明CD⊥平面PAD,利用平面OEB∥平面PAD,证明CD⊥平面OEB,即可证明:平面BEO⊥平面PCD.

解答 证明:(1)连接OE,则OE∥PA,
∵OE?平面PAD,PA?平面PAD,
∴OE∥平面PAD,
∵∠DAC=∠AOB,∴OB∥AD,
∵OB?平面PAD,AD?平面PAD,
∴OB∥平面PAD,
∵OB∩OE=O,
∴平面OEB∥平面PAD,
∵BE?平面OEB,
∴BE∥平面PAD
(2)∵AC是圆O的直径,
∴CD⊥AD,
∵PA⊥平面ABCD,
∴CD⊥PA,
∵PA∩AD=A,
∴CD⊥平面PAD,
∵平面OEB∥平面PAD,
∴CD⊥平面OEB,
∵CD?平面PCD,
∴平面BEO⊥平面PCD.

点评 本题考查线面平行、垂直的证明,考查面面垂直,考查学生分析解决问题的能力属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

16.设z=1+i(i是虚数单位),O为坐标原点,若复数$\frac{2}{z}+{z^2}$在复平面内对应的向量为$\overrightarrow{OZ}$,则向量$\overrightarrow{OZ}$的模是(  )
A.1B.2C.$\sqrt{3}$D.$\sqrt{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知椭圆C1的中心在坐标原点,两焦点分别为双曲线${C_2}:\frac{x^2}{2}-{y^2}=1$的顶点,直线$x+\sqrt{2}y=0$与椭圆C1交于A,B两点,且点A的坐标为$(-\sqrt{2},1)$,点P是椭圆C1上的任意一点,点Q满足$\overrightarrow{AQ}•\overrightarrow{AP}=0$,$\overrightarrow{BQ}•\overrightarrow{BP}=0$.
(1)求椭圆C1的方程;
(2)求点Q的轨迹方程;
(3)当A,B,Q三点不共线时,求△ABQ面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知两点$A(-\sqrt{2},0),B(\sqrt{2},0)$,动点P在y轴上的投影是Q,且$2\overrightarrow{PA}•\overrightarrow{PB}=|\overrightarrow{PQ}{|^2}$.
(Ⅰ)求动点P的轨迹C的方程;
(Ⅱ)过F(1,0)作互相垂直的两条直线交轨迹C于点G,H,M,N,且E1,E2分别是GH,MN的中点.求证:直线E1E2恒过定点.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.过圆x2+y2=16上一点P作圆O:x2+y2=m2(m>0)的两条切线,切点分别为A、B,若$∠AOB=\frac{2}{3}π$,则实数m=(  )
A.2B.3C.4D.9

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.(3a+2b)6的展开式中的第3项的二项式系数为15.(用数字作答)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.直线$\left\{\begin{array}{l}{x=t-1}\\{y=2-t}\end{array}\right.$(t为参数)与曲线$\left\{\begin{array}{l}{x=3cosθ}\\{y=2sinθ}\end{array}\right.$(θ为参数)的交点个数是2.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.已知数列{an}中,a1=-1,an+1=2an+3n-1(n∈N*),则其前n项和Sn=2n+2-4-$\frac{3{n}^{2}+7n}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.圆心为(0,1)且与直线y=2相切的圆的方程为(  )
A.(x-1)2+y2=1B.(x+1)2+y2=1C.x2+(y-1)2=1D.x2+(y+1)2=1

查看答案和解析>>

同步练习册答案