精英家教网 > 高中数学 > 题目详情
1.过圆x2+y2=16上一点P作圆O:x2+y2=m2(m>0)的两条切线,切点分别为A、B,若$∠AOB=\frac{2}{3}π$,则实数m=(  )
A.2B.3C.4D.9

分析 根据题意画出图形,结合图形,不妨取圆x2+y2=16上一点P(4,0),
过P作圆O:x2+y2=m2(m>0)的两条切线PA、PB,
求出$∠AOB=\frac{2}{3}π$时OA的值即可.

解答 解:如图所示;
取圆x2+y2=16上一点P(4,0),
过P作圆O:x2+y2=m2(m>0)的两条切线PA、PB,
当$∠AOB=\frac{2}{3}π$时,∠AOP=$\frac{π}{3}$,且OA⊥AP,OP=4;
OA=$\frac{1}{2}$OP=2,
则实数m=OA=2.
故选:A.

点评 本题考查了直线与圆的方程应用问题,也考查了数形结合的应用问题,是基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

11.已知函数f(x)=$\frac{1}{3}$x3-alnx-$\frac{1}{3}$(a∈R,a≠0)
(1)当a=3时,求曲线y=f(x)在点(1,f(1))处的切线方程;
(2)若对任意的x∈[1,+∞),都有f(x)≥0恒成立,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.设椭圆$E:\frac{x^2}{a^2}-\frac{y^2}{b^2}=1({a>0,b>0})$的右顶点为A,右焦点为F,B为椭圆E在第二象限上的点,直线OB交椭圆E于点C,若直线FB平分线段AC,则椭圆E的离心率是$\frac{1}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.设Tn为数列{an}的前n项之积,即Tn=a1a2a3…an-1an,若${a_1}=2,\frac{1}{{{a_n}-1}}-\frac{1}{{{a_{n-1}}-1}}=1$,当Tn=11时,n的值为10.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知a,b,c为正实数,且a+b+c=3
(Ⅰ)解关于c的不等式|2c-4|≤a+b;
(Ⅱ)证明:$\frac{c^2}{a}+\frac{a^2}{b}+\frac{b^2}{c}≥3$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.如图,已知AC是圆O的直径,PA⊥平面ABCD,E是PC的中点,∠DAC=∠AOB.
(1)证明:BE∥平面PAD
(2)求证:平面BEO⊥平面PCD.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.已知数列{an}为等比数列,且${a_{2015}}+{a_{2017}}=\int_0^2{\sqrt{4-{x^2}}}dx$,则a2016(a2014+a2018)的最小值为$\frac{{π}^{2}}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.将函数f(x)=sin2x的图象沿x轴向右平移φ(φ>0)个单位长度后得到函数g(x)的图象,若函数g(x)的图象关于y轴对称,则当φ取最小的值时,g(0)=-1.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知点$P(\sqrt{3},1)$,Q(cosx,sinx),O为坐标原点,函数$f(x)=\overrightarrow{OP}•\overrightarrow{QP}$.
(1)求函数f(x)的解析式及最小正周期;
(2)若A为△ABC的内角,f(A)=4,BC=3,△ABC的面积为$\frac{{3\sqrt{3}}}{4}$,求△ABC的周长.

查看答案和解析>>

同步练习册答案