精英家教网 > 高中数学 > 题目详情
16.已知a,b,c为正实数,且a+b+c=3
(Ⅰ)解关于c的不等式|2c-4|≤a+b;
(Ⅱ)证明:$\frac{c^2}{a}+\frac{a^2}{b}+\frac{b^2}{c}≥3$.

分析 (I)用c表示出a+b,去绝对值符号即可得出c的范围;
(II)利用基本不等式可得$\frac{{c}^{2}}{a}+a$≥2c,$\frac{{a}^{2}}{b}+b$≥2a,$\frac{{b}^{2}}{c}$+c≥2b,将以上三个不等式相加即可得出结论.

解答 (I)解:∵a+b+c=3,a+b=3-c,
∴|2c-4|≤3-c,∴c-3≤2c-4≤3-c,
解得1≤c≤$\frac{7}{3}$.
∴不等式的解集为$[1,\frac{7}{3}]$.
(II)证明:∵$\frac{c^2}{a}+a≥2c$,$\frac{a^2}{b}+b≥2a$,$\frac{b^2}{c}+c≥2b$,
∴$\frac{c^2}{a}+\frac{a^2}{b}+\frac{b^2}{c}+a+b+c≥2a+2b+2c$,
∴$\frac{c^2}{a}+\frac{a^2}{b}+\frac{b^2}{c}≥a+b+c$,
∵a+b+c=3,∴$\frac{c^2}{a}+\frac{a^2}{b}+\frac{b^2}{c}≥3$.

点评 本题考查了不等式的解法,基本不等式及其应用,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

6.在直角坐标系xOy中,曲线C1的参数方程为$\left\{\begin{array}{l}x=2+2cosα\\ y=2sinα\end{array}\right.$,参数α∈(0,π),M为C1上的动点,满足条件$\overrightarrow{OM}=2\overrightarrow{OP}$的点P的轨迹为曲线C2
(Ⅰ)求C2的普通方程;
(Ⅱ)在以O为极点,x轴的非负半轴为极轴的极坐标系中,射线$θ=\frac{π}{3}$与C1,C2分别交于A,B两点,求|AB|.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.一个几何体的三视图如图所示,则该几何体的体积为(  )
A.B.C.D.16π

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.为了响应国家发展足球的战略,哈市某校在秋季运动会中,安排了足球射门比赛.现有10名同学参加足球射门比赛,已知每名同学踢进的概率均为0.6,每名同学有2次射门机会,且各同学射门之间没有影响.现规定:踢进两个得10分,踢进一个得5分,一个未进得0分,记X为10个同学的得分总和,则X的数学期望为(  )
A.30B.40C.60D.80

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.在△ABC中,设边a,b,c所对的角分别为A,B,C,A,B,C都不是直角,且accosB+bccosA=a2-b2+8cosA
(Ⅰ)若sinB=2sinC,求b,c的值;
(Ⅱ)若$a=\sqrt{6}$,求△ABC面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.过圆x2+y2=16上一点P作圆O:x2+y2=m2(m>0)的两条切线,切点分别为A、B,若$∠AOB=\frac{2}{3}π$,则实数m=(  )
A.2B.3C.4D.9

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知抛物线${C_1}:{y^2}=2px(p>0)$的焦点为F,准线为l,圆${C_2}:{x^2}+{y^2}={p^2}$被直线l截得的线段长为$2\sqrt{3}$.
(1)求抛物线C1和圆C2的方程;
(2)设直线l与x轴的交点为A,过点A的直线n与抛物线C1交于M、N两点,求证:直线MF的斜率与直线NF的斜率的和为定值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.中国南北朝时期的著作《孙子算经》中,对同余除法有较深的研究.设a,b,m(m>0)为整数,若a和b
被m除得的余数相同,则称a和b对模m同余,记为a=b(bmodm).若$a=C_{20}^0+C_{20}^1•2+C_{20}^2•{2^2}+…+C_{20}^{20}•{2^{20}}$,a=b(bmod10),则b的值可以是(  )
A.2011B.2012C.2013D.2014

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知在平面直角坐标系xOy中,以O为极点,x轴的正半轴为极轴,建立极坐标系.曲线C1的极坐标方程为ρ=4cosθ,直线l:$\left\{\begin{array}{l}x=1-\frac{{2\sqrt{5}}}{5}t\\ y=1+\frac{{\sqrt{5}}}{5}t\end{array}\right.$(t为参数).
(1)求曲线C1的直角坐标方程及直线l的普通方程;
(2)若曲线C2的参数方程为$\left\{\begin{array}{l}x=2cosα\\ y=sinα\end{array}\right.$(α为参数),曲线C1上点P的极角为$\frac{π}{4}$,Q为曲线C2上的动点,求PQ的中点M到直线l距离的最大值.

查看答案和解析>>

同步练习册答案